BCGC Wins Cash Award for Role in Developing Novel Preservative for GC3/InnoCentive Challenge

Berkeley – On August 6th the Berkeley College of Chemistry reported that the Berkeley Center for Green Chemistry (BCGC) would be sharing a $35,000 cash award for its entry in the “Developing New Preservatives for Personal Care & Household Products” challenge held by the Green Chemistry & Commerce Council (GC3) and InnoCentive.  BCGC was part of an academic/industry/government team comprising researchers from the Western Regional Research Center (Albany, CA) of the USDA, University of Victoria, the household products manufacturer Method Products, and the green chemistry venture capital fund Safer Made. The challenge required teams to develop, test, and present a preservative compound that prevented bacterial and fungal growth in cleaning and personal care products. Nearly 50 teams entered the contest, which launched April, 2017, and offered a first place prize of $150,000.

The BCGC team was one of four first place finalists who split the top prize. Their winning entry was a “reversible” preservative compound, which was active in higher concentrations, as a product, but inactive once it was diluted, causing its two subunits to split apart harmlessly in wastewater and or the environment. The research and development of this novel preservative built on research and collaborations that started with the Greener Solutions class of 2014, and have grown through a series of internships, research projects and industrial partnerships.

The work required an interdisciplinary team of chemists, microbiologists, toxicologists, and product formulators. Several members of the winning research team are associates of BCGC: Heather Buckley (former board member of BCGC and Greener Solutions Student, now Assistant Professor at University of Victoria), William Hart-Cooper (current associate director and co-instructor of the Greener Solutions course, now Research Chemist at the USDA), Kaj Johnson (Green Chef at Method Products and Greener Solutions partner), and Marty Mulvihill (former Executive Director of BCGC and  Greener Solutions instructor, current BCGC board member and co-founder of Safer Made). All have been a part of the BCGC preservatives work from the very beginning, and carried the project through its many phases as their careers have progressed. David Faulkner (former SAGE student and current BCGC postdoc) joined the research project in 2015. In 2017, the team published a report of some of their initial findings in the search for safer preservatives, and the article was selected for inclusion in the ACS Virtual Special Issue on Promoting the Development and Use of Quantitative Sustainability Metrics in the journal ACS Sustainable Chemistry and Engineering.

The BCGC is proud of its role in the work on this award-winning project, and we are excited to continue it, developing safer preservative compounds and advancing the role of green chemistry in personal care products.

The formal announcement can be found here.

Meet the SAGE Trainees!*Updated*

The SAGE IGERT Fellowship at BCGC supports UC Berkeley graduate students conducting research related to green chemistry and green energy. The fellowship began in 2013 and now, two years later, there are nineteen trainees and alum doing amazing green work on campus.

We went out to speak to them about their research…and a few other fun things. We asked all the trainees to describe their work in the simplest terms possible: using only the 1,000 most commonly used words in the English language (thanks to the Up-goer text editor). We also asked the students for a recommendation–a bright new green idea in the world that they’re excited about–and got some great responses. So click through the gallery and get to know the BCGC SAGE IGERT trainees!



Outgoing executive director Marty Mulvihill reflects on five years with BCGC

Marty HeadshotI first fell in love with molecules in my sophomore organic chemistry course. I remember commenting to my lab partner that organic chemistry problems were much more interesting than crossword puzzles, and they should be included in newspapers (with spelling as poor as mine, crosswords were never very fun). After failing to convince others of the merits of Sunday chemistry problems in the newspaper, I entertained myself by digging into the chemistry of the materials and products in our everyday world. Understanding the design and use of molecules has become a life-long endeavor. These last five years at the Berkeley Center for Green Chemistry (BCGC) have been wonderful, providing me with the opportunity to deepen my appreciation of chemistry and the larger social, economic, and political structures that influence the selection of chemicals.

The mission of the BCGC is to advance the design, adoption, and use of inherently safer and more sustainable chemicals. We have made great strides in the past five years to normalize Green Chemistry and sustainability within the culture of chemistry. We have also succeeded in getting faculty and students outside of chemistry to be interested in how chemicals and chemistry both contribute to and can help solve many of the modern era’s environmental and health challenges. Our students and faculty have also spent an extraordinary amount of time translating the principles of Green Chemistry to broader audiences, including providing advice and training to state regulators, business, and K-12 students. These educational, research, and engagement projects have helped grow our Center from a handful of students, staff, and faculty into a program that has made lasting impacts on the way the people approach chemicals on and off campus.

We have be able to successfully bring faculty and students from a broad range of disciplines together to research and discuss both the drivers and barriers to Green Chemistry adoption. In the beginning, students and faculty struggled to find common language and approaches, slowing our progress on interdisciplinary initiatives. After a few iterations, however, we found the best way to remove these barriers was to assemble interdisciplinary teams of students within a classroom setting and have them work together to address materials selection challenges. These classes and projects have challenged the faculty to think and teach in new and more interactive ways, which has strengthened our ability to collaborate. By focusing on projects rather than lectures, we have been able to avoid trying to make everyone an expert on everything, and instead have focused on teaching techniques for productive collaboration and communication. The Greener Solutions program grew out of this approach and is now one of our flagship programs.

Greener Solutions has been a success because it simultaneously advances our educational, research, and engagement approaches to promoting Green Chemistry. During our early days as a Center we struggled to find ways to engage productively with external stakeholders. We spent too much time talking about what we might do and not enough time talking with people who were interested in solving particular chemical challenges. The Greener Solutions program partners interdisciplinary teams of students with external partners who have chemistry challenges. This is great for our students, who crave real-world application of their deep technical knowledge. It is beneficial for our partners, who gain insights into their chemistry challenges and have the opportunity to work with some of Berkeley’s best students. The program has also been a great testing ground for new research projects and approaches.

In just five years, BCGC has had a large and lasting impact on the educational landscape at UC Berkeley. Our initial grant funding in 2010 from the Cal EPA focused on the development of Green Chemistry undergraduate chemistry laboratory curriculum and the development of an interdisciplinary graduate course. By 2012, our team had managed to incorporate a dozen new experiments into the curriculum and, more importantly, we also helped create action within the Department of Chemistry to renovate all of the undergraduate labs and put Green Chemistry and sustainability at the core of this initiative. The Department went on to raise 10 million dollars for this initiative including a three million dollar gift from the Dow Foundation. Similarly, our interdisciplinary graduate class, first offered in 2011, has grown into an NSF funded educational program that funds 25 graduate students from departments across campus. We now offer two graduate classes and are continuing to engage more students on issues related to Green Chemistry.

This is an exciting time for the Berkeley Center for Green Chemistry; in many ways we are still getting started. Institutional change is slow, but after five years we have built some momentum, and I believe that we will be able to have an even bigger impact on interdisciplinary research at the nexus of chemicals, basic resources, and manufacturing in the coming years. We have a number of new projects developing in the wings and I am very excited to watch how they take shape under the capable leadership of Tom McKeag and the Center staff and faculty. I am also looking forward to continuing my work with students pursuing projects with the potential to improve the safety and sustainability of chemicals and products. My interactions with students have always been the highlight of my role at the Center and I am grateful that I will continue to have the opportunity to work with passionate students and innovators in my new role as Senior Advisor.

What we have accomplished at the Berkeley Center for Green Chemistry wouldn’t have been possible without the support of the College Deans and the Vice Chancellor for Research at UC Berkeley. The early support from the College of Chemistry, School of Public Health, College of Natural Resources, and the Haas School of Business were essential for giving the faculty the time and freedom to create the Center. We at the Center are grateful to our many funders, who include state and federal agencies, a number of foundations, and our industry partners (more information about these supporters can be found on our website). The Center has also benefited greatly from the interactions we’ve had with the larger Green Chemistry community around the country. Our curriculum efforts were supported by all of the work that came before us at the University of Oregon, ACS institute for Green Chemistry, and the Beyond Benign Foundation. Finally, I am personally grateful to all of the faculty, students, and collaborators that I have worked with during my tenure as Executive Director. I have learned something new every day and I could not have done it without all of you. Thank you!




BCGC in the news!

logo mashup 2

BCGC students and their work have been making big waves in national media. Check out these great articles and get caught up on what everyone at BCGC is up to these days:

  • Noah Kittner, a SAGE fellow, co-wrote a letter to the editor with his adviser Dan Kammen advising sustainable energy development for economic growth in the Balkan region. The letter was published in The Economist.
  • Post-doc Heather Buckley is both in the news and writing it herself! The Indian start-up she works with to develop cheap and sustainable roofing materials was profiled in Fast Company. Heather wrote about her experience working in India, and the importance of designing safe materials with the global manufacturing workforce in mind, in an essay on

Great work everyone!

Chemical Footprinting: New tools for tracking green chemistry business practices

Chemical Footprinting: Identifying Hidden Liabilities in Manufacturing Consumer Products

In an unassuming low-rise in the Boston suburbs, Mark Rossi tinkers with a colorful dashboard on his laptop screen while his border collie putters around his feet. Rossi is the founder of BizNGO and Clean Production Action, two nonprofit collaborations of business and environmental groups to promote safer chemicals. He’s also the creator of tools that he hopes will solve a vexing problem—how to get a handle on companies’ overall toxic chemicals usage.

Consider the screen of Rossi’s laptop. Chances are the company that manufactured the product has crunched the numbers on the total amount of carbon, water, and land associated with getting it into the office—from the manufacturing of the electronic components to the packaging and transportation to retail outlets. But the total amount of toxic chemicals that contributed to the screen’s design and production might be a more difficult question to answer….

Read the entire story, by Lindsey Konkel, at

Endocrine disruptors cost at least $175 billion annually in the E.U.

a children's room

Hormone-disrupting flame retardants often found in children’s toys and furniture were some of the chemicals investigated (jingdianjiaju/Flickr)

An international panel of scientists has found that endocrine disrupting chemicals likely cost the European Union over 100 billion dollars annually — and American officials say this expense could be even higher in the U.S.

The scientific panel, convened by the Endocrine Society, adopted strategies created by the Intergovernmental Panel on Climate Change  to evaluate how much causation of a particular disorder could be attributed to a particular chemical. For example, they found 70-100% probability that polybrominated diphenyl ether (PBDE) and organophosphates contribute to IQ loss, based on previously published epidemiological studies. They then estimated the costs incurred to the European Union from health issues caused by exposure to endocrine disrupting chemicals. The health effects investigated included neurobehavioral disorders, male reproductive health issues, and diabetes, and the total cost was found to be at least 100 billion dollars.
Continue reading

Green Chemistry on your Smart Phone!

“Incorporating Green Chemistry Concepts into Mobile Chemistry Applications and Their Potential Uses.” Ekins, S.; Clark, A. M.; Williams, A. J. ACS Sustainable Chem. Eng. 2013, 1, 8-13. DOI: 10.1021/sc3000509

We here at GreenChemBlog have not posted in a while, but still hope to post and are still looking for contributors to the blog. Posts might be a bit shorter going forward, though, in order for us to post more frequently.

I’ve expanded my reading recently to include a new ACS journal, ACS Sustainable Chemistry & Engineering. In the first issue is the above article, which highlights a few recent additions to the smart phone/tablet world that utilize green chemistry!
Continue reading

How Robots Can Help Us Understand the Environmental Fate of Nanoparticles

“Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing” von der Kammer, F.; Ottofuelling, S.; Hofmann, T. Environ. Pollut. 2010, 158, 3472-3481. DOI: 10.1016/j.envpol.2010.05.007

In order to rationally design nanoparticles that are environmentally benign, we need to be able to accurately predict their environmental fate (i.e. will they travel long distances through waterways, get stuck in soils or sediments, etc?).  Though relatively robust modeling tools are available for predicting the environmental fate of organic chemicals, analogous tools for nanoparticles are in their infancy.  This is largely due to the insane variety of nanoparticle properties (e.g., composition, size, shape, surface chemistry, etc) that can be varied, resulting in an equally insane variety of nanoparticles to study.  In addition, we know very little about any of these nanoparticles.  One important property that controls the environmental fate of nanoparticles is their propensity to aggregate together and fall out of suspension, potentially limiting their environmental mobility.

Continue reading