SAVING COHO SALMON: alternatives for 6PPD in tire manufacturing

Illustration and copyright: Paul Vecsei/DFO

Elizabeth Boxer, Emely Heras, Kiera Hollenbeck, Gabby Rigutto, Elliot Rossomme, Jake Wilson December 7th, 2021

Elizabeth Boxer MPH Environmental Health Sciences

Emely Heras MPH Environmental Health Sciences

Kiera Hollenbeck MS Environmental Engineering

MS Environmental

Health Sciences

Elliot Rossomme Ph.D., Chemistry

Jake Wilson Ph.D., Chemistry

Presentation Outline

BACKGROUND

Background

Modifi

Food preservatives

Lignir

Alternative rubber formulations

The mysterious recurring dieoff of coho salmon

- Salmon are a keystone species
 - High ecological importance in both Ο terrestrial and aquatic environments
- Cultural and financial dependency for the Yurok Tribe and further tribes along the Pacific Northwest.
- High rates of pre-spawning mortality of • adult coho salmon in urban watersheds has been documented since the late 1990s

of 6PPD

Previously associated with stormwater • runoff, but exact agent was not known until 2020

Closing

Image: adult female coho carcass with characteristically high egg retention. Photo by Tiffany Linbo, NOAA Fisheries.

Background

Food

preservatives

Alternative rubber formulations

The problem

N-(1,3-dimethylbutyl)-*N*'-phenyl-p-phenylenediamine

functional compound

Tian, *et al., Science* **371**, 185-189 (2021). Hiki, *et al., Environ. Sci. Technol. Lett.* **8**, 779-784 (2021).

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulationsClosing

6PPD

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine

Antidegradants are added to tires in order to slow the degradation of tires by oxygen and ozone. Used in some tires in the 1970s and then adopted by all other tire manufacturers in the early 2000s

Image courtesy of the U.S. Tire Manufacturers Association

Background

Modificat

Food preservatives

gnin Al

Alternative rubber formulations

Passenger vehicle tires

Closing

Source: Asad Zahid Parkwheels.com

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulations

Passenger vehicle Commercial vehicle

Source: Asad Zahid Parkwheels.com

Closing

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulations

Passenger vehicle Commercial vehicle Aircraft

Source: Asad Zahid Parkwheels.com

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulationsClosing

Passenger vehicle Commercial vehicle Aircraft Bicycle

Source: Asad Zahid Parkwheels.com

Closing

Source: Lumin.com

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulations

Passenger vehicle Commercial vehicle Aircraft Bicycle Lawn and garden

Source: Asad Zahid Parkwheels.com

Closing

Source: Lumin.com

Background

oproach

Food preservatives

Lign

Alternative rubber formulations

Passenger vehicle Commercial vehicle Aircraft Bicycle Lawn and garden Recreation Construction Etc. Carly Earl / The Guardian

World of Mining profession

Asad Zahid / Parkwheels.com

Lumin.com

formulations

Closing

Background

Food preservatives

Rubber performance is highly sensitive to formulations and manufacturing processes

Tires must...

...support the weight of a vehicle ...provide everyday and emergency steering ...grip the road ...perform in a variety of environments ...absorb vibrations and impacts

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulationsClosing

Rubber is comprised of unsaturated, cross-linked polymers

Structures courtesy of polymerdatabase.com

Closing

Background

of 6PPD

pres

Food preservatives

h Alterr

Alternative rubber formulations

Rubber is comprised of unsaturated, cross-linked polymers Three key breakdown mechanisms: *Ozonation* (surface phenomenon)

N. M. Huntink, ``Durability of rubber products: Development of new antidegradants for long-term protection" (2003).

of 6PPD

Background

preservatives

Food

Alternative rubber formulations

Food

preservatives

Rubber is comprised of unsaturated, cross-linked polymers Three key breakdown mechanisms: ozonation oxidation

Alternative rubber

formulations

Closing

N. M. Huntink, ``Durability of rubber products: Development of new antidegradants for long-term protection'' (2003).

of 6PPD

Background

Food

preservatives

Rubber is comprised of unsaturated, cross-linked polymers Three key breakdown mechanisms: ozonation oxidation *flex cracking*

Alternative rubber

formulations

Closing

N. M. Huntink, ``Durability of rubber products: Development of new antidegradants for long-term protection'' (2003).

of 6PPD

Background

6PPD protects tires from all three mechanisms of tire breakdown

Food

preservatives

Scavenges surface O₃

Background

Image courtesy of the U.S. Tire Manufacturers Association

N. M. Huntink, ``Durability of rubber products: Development of new antidegradants for long-term protection'' (2003).

of 6PPD

Alternative rubber formulations

6PPD protects tires from all three mechanisms of tire breakdown

Scavenges surface O_3 Forms *protective barrier*

Image courtesy of the U.S. Tire Manufacturers Association

N. M. Huntink, "Durability of rubber products: Development of new antidegradants for long-term protection" (2003).

Background

of 6PPD

Food

preservatives

Alternative rubber formulations

6PPD protects tires from all three mechanisms of tire breakdown

Food

preservatives

Scavenges surface O₃ Forms protective barrier Consumes **oxygen and carbon radicals** within the tire to terminate chain reactions

Image courtesy of the U.S. Tire Manufacturers Association

Alternative rubber

formulations

Closing

N. M. Huntink, ``Durability of rubber products: Development of new antidegradants for long-term protection'' (2003).

of 6PPD

Background

APPROACH

ground Approach

Modific of 6P Food preservatives

Lignin

Alternative rubber formulations

Rubber chemistry

Continuously present at the tire surface Reactive with ozone, but not too reactive Antioxidant properties No adverse effects on the rubber processing Available in rubber compound over its entire life cycle to ensure protection of rubber

Rubber chemistry Tire needs to meet national **tire** *regulation standards*

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulationsClosing

Rubber chemistry Tire needs to meet national tire regulation standards *Environmental and human health criteria*

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulations

Necessary (but not sufficient) physical criteria:

Reactivity

- Redox potential (E_h): measure of the tendency of a substance to give or gain electrons to or from an electrode
- Rate of reaction with ozone

Necessary (but not sufficient) physical criteria:

Reactivity

- Redox potential (E_h): measure of the tendency of a substance to give or gain electrons to or from an electrode
- Rate of reaction with ozone

of 6PPD

Diffusivity

Approach

- Molecular weight
- Octanol-water partition coefficient (K_{ow}): a measure of the hydrophilicity of a substance

Food

preservatives

Alternative rubber

formulations

Framing the hazard assessment

Closing

Authoritative listings Broad, cursory literature searches Computational/predictive toxicological methods

Globally Harmonised System (GHS) Categories GreenScreen Cradle2Cradle Material Health Assessment Methodology Hodge-Sterner Scale

L: Low	M: Moderate	H: High	vH: Very Hi	igh	DG: Data Ga	р
				Source	: https://www.greenscreenchemic	als.or
ground Approad	h Modification of 6PPD	Food preservatives	Lignin	Alt	ernative rubber formulations	

This is the beginning of the process

Approach of 6PPD preservatives

Lignin

Alternative rubber formulations

This is the beginning of the process

Strategy 1: MODIFICATION OF 6PPD

Background

Modification of 6PPD Food preservatives

Lignin

Alternative rubber formulations

Structure modification

• Modification of 6PPD to *prevent quinone formation*

Structure modification

• Modification of 6PPD to *prevent quinone formation*

modified ozonation product

modified 6PPD

Modeling of physicochemical properties

Food

preservatives

 Density functional theory (DFT) modeling can predict reactivity towards oxygen and carbon radicals

modified 6PPD

Alternative rubber

formulations

Closing

N. Mardirossian and M. Head-Gordon, Mol. Phys. 115, 2315-2372 (2017).

Modification

of 6PPD

Modeling of physicochemical properties

- Density functional theory (DFT) modeling can predict reactivity towards oxygen and carbon radicals
- *Film formation* may be more difficult to predict

modified 6PPD

Environmental concerns are difficult to predict

Exact *mechanism* of toxicity to coho salmon is *unknown*

modified ozonation product

Environmental concerns are difficult to predict

- Exact mechanism of toxicity to coho salmon is unknown
- Computational toxicology models unlikely to appreciate *subtle structural differences*

modified ozonation product

Environmental concerns are difficult to predict

- Exact mechanism of toxicity to coho salmon is unknown
- Computational toxicology models unlikely to appreciate subtle structural differences
 - Severe, acute toxicity to coho salmon *may be reduced*

modified ozonation product

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulationsClosing

Strategy 2: FOOD PRESERVATIVES

Background

oach Modification

Food preservatives

Lignin

Alternative rubber formulations

Food preservatives and additives

Antioxidants added to food to extend shelf-life Historical overlap between AOs used in rubber and in food Several types, including <u>Gallates</u>

Image: Melro, E., Filipe, A., Sousa, D., Medronho, B., & Romano, A. (2021). Revisiting lignin: A tour through its structural features, characterization methods and applications. New Journal of Chemistry, 45(16), 6986–7013. https://doi.org/10.1039/d0nj06234k

Food preservatives

of 6PPD

Alternative rubber formulations

Gallates | antioxidant/antiozonant activity

- Gallates protect organisms from damage that occurs through ozonation
 - Addition of propyl gallate to corn soil protected the corn from ozonation
 - Cellular membranes treated with propyl gallate were less susceptible to ozonation damage than those left untreated

Food

preservatives

Alternative rubber

formulations

Closing

Chem-Biol. Interact., 1998, 114, 45-59. Plant & Cell Physiol. 1982, 23, 821-832., Environ. Exp. Bot., 1990, 30, 443-449.

of 6PPD

Gallates | Diffusion properties

Substance	MW (g/mol)	LogK _{ow}	
6PPD	268	4.68	
n-Propyl Gallate	212	1.80	
n-Butyl Gallate	226	2.40 (computed)	
n-Pentyl Gallate	240	2.70 (computed)	

Closing

• Diffusion properties are likely to be similar and are modular

of 6PPD

Chem-Biol. Interact., **1998**, 114, 45-59. Plant & Cell Physiol.**1982**, 23, 821-832., Environ. Exp. Bot., **1990**, 30, 443-449.

Food

preservatives

pentyl

Alternative rubber formulations

Gallates: Hazard assessment

Group I Human Endpoints					Group II and	Group II* End	points	Ecotoxicity	Fate		
Common Trade Name	Carcinogenicity/ Mutagenicity	Reproductive Toxicity	Developmental Toxicity	Endocrine Activity	Acute mammalian toxicity	Systemic Toxicity/ Neurotoxicity	Skin sensitization /irritation	Eye irritation	Aquatic Toxicity Acute/chronic	Persistence	Bioaccumulation
Parent Compound											
6PPD	DG	DG	M-L	DG	м	DG	H-M	м	vH	L	vH
6PPD quinone	DG	DG	DG	DG	DG	DG	DG	DG	vH	DG	DG
Strategy: Food addi	tives/preservative	5									
Propyl gallate	L	L	L	М	м	DG	н	н	VH	н	vL
Octyl Gallate	L	L	DG	DG	м	DG	H-M	DG	н	DG	L
Epigallocatechin gallate	DG	м	DG	DG	м	DG	н	н	н	DG	DG
Gallic acid	L	L	DG	DG	L	L	м	М	L	L	vL
Lauryl gallate	DG	DG	DG	DG	DG	М	H-M	н	н	н	L

L: Low M: Moderate H: High vH: Very High DG: Data Gap

Strategy 3:

BackgroundApproachModification
of 6PPDFood
preservativesLigninAlternative rubber
formulations

Lignin

- The second most abundant plant-based organic polymer in the world.
- Cost competitive woodderivative, which possesses antioxidant properties
- There are a variety of lignins, which can vary based on their source and manufacturing processes

ckground

Modification of 6PPD Food preservatives

Lignin

Alternative rubber formulations

Lignin | antioxidant/antiozonant activity

Substance	Redox Potential (E _{1/2} V vs Fe/Fe ⁺)				
6PPD	-0.12				
Lignin (Spruce and Birch)	0.31-0.35				

- Limited data on antiozonant reactivity shows minimal activity for lignin (0.12-11.0 mol O₃/C₉ unit lignin/min)
- Comparisons of ozonation rates of these materials in tires is necessary

of 6PPD

Polym. Degred. Stabil. 2009, 94, 1457-1466, Biotechnol. Biofuels 2018, 11, 296., Polym. Sci. 1981, 19, 2053-2063., Wood. Res. Technol. 2004, 58, 263-268

Lignin

Food

preservatives

Alternative rubber

formulations

Lignin | Diffusion Properties

Substance	MW (g/mol)	LogK _{ow}
6PPD	268	4.68
Indulin AT (Lignin)	5000 (relative average)	-0.57
P1000 (Lignin)	5200 (relative average)	-0.818
S5000 (Lignin)	5600 (relative average)	-1.09

Food

preservatives

Lignin

Alternative rubber

formulations

Closing

• Diffusion of lignin is likely to be slower than that of 6PPD

J. Pharm. Sci. 2008, 97, 584-598., Green Chem. 2020, 22, 7031-7046.

of 6PPD

Kraft Lignin vs. 6PPD

(Nilmini and Surej, 2019) Aging 70 hours at 70 degrees Celsius

Tensile Strength (MPa)	Aging
Tear Strength (N/mm)	Flex Fatigue (Cycles to crack)
Abrasion Resistance (mm³ lost)	Concentration (phr)

Lignin/silica and calcium liginate/calcium silicate vs. IPPD & TMQ (Zaher et al., 2014) Aging 7 days at 90 degrees Celsius

Tensil (e Strength MPa)	Aging		
Elon Br	gation @ eak (%)	Crosslink density		
Therm	al Stability	Concentration (phr)		
		(1)		

		Better Performance	Simil Perfo	lar ormance	Slightly wor Performanc	rse ce	Much we Perform	orse ance		
ackground	Approach	Modification of 6PPD		Fo preserv	od vatives) I	Lignin	A	Iternative rubber formulations	Closing

Lignin: Hazard assessment

	Group I Human Endpoints					Group II and Group II* Endpoints				Fate	
Common Trade Name	Carcinogenicity/ Mutagenicity	Reproductive Toxicity	Developmental Toxicity	Endocrine Activity	Acute mammalian toxicity	Systemic Toxicity/ Neurotoxicity	Skin sensitization /irritation	Eye irritation	Aquatic Toxicity Acute/chronic	Persistence	Bioaccumulation
Parent Compound											
6PPD	DG	DG	M-L	DG	М	DG	H-M	м	vH	L	vH
6PPD quinone	DG	DG	DG	DG	DG	DG	DG	DG	vH	DG	DG
Strategy: Lignin											
p-Coumaryl alcohol	DG	DG	DG	DG	DG	м	н	н	DG	DG	DG
coniferyl alcohol	DG	DG	DG	DG	DG	м	н	н	DG	DG	DG
Sinapyl alcohol	DG	DG	DG	DG	DG	м	н	н	DG	DG	DG
Lignin	L	L	L	L	L	L	L	L	L	L	L

L: Low M: Moderate H: High vH: Very High DG: Data Gap

Food

preservatives

Lignin

Biosynth Carbosynth, "p-coumaryl alcohol", FC145653, Safety Data Sheet; Biosynth AG, USA, May 29, 2021.
Biosynth Carbosynth, "coniferyl alcohol", FC69901, Safety Data Sheet; Biosynth AG, USA, May 29, 2021.
Cayman Chemical, "coniferyl alcohol", 29470, Safety Data Sheet; Cayman Chemical Company, USA, Jan 19, 2020.
4. Pubchem identifier: 528050. URL: <u>https://pubchem.ncbi.nlm.nih.gov/compound/Sinapyl-alcohol</u>

Alternative rubber

formulations

5. DOI: https://doi.org/10.1016/i.indcrop.2007.07.011

Closing

Background

Strategy 4: ALTERNATIVE RUBBER FORMULATIONS

Background

Modificati of 6PPD Food preservatives

Lign

Alternative rubber formulations

Vulcanization | process modifications

Food

preservatives

Process	Temp. [°C]	Time [min.]
Mixing	100 – 170	5 – 9
Calendering	80 – 120	2 – 3
Extrusion	100 – 140	1 – 2
Curing	140 – 210	Varies (10+)

of 6PPD

 High temperatures degrade many common AOs

• Alternative formulation schemes may require lower temperatures

Alternative rubber

formulations

Vulcanization | Different Accelerators

- Accelerator: A substance that causes the vulcanization process to occur more rapidly or at lower temperatures
- Dithiocarbamates: well-established accelerator in vulcanization
 - Activated through reaction at carbon

Alternative rubber

formulations

Closing

• Xanthogenates: replace N with O to increase reactivity of carbon leading to faster activation of the accelerator

Food

preservatives

• Able to achieve cure temperatures <120 °C for natural and synthetic rubber cements and adhesives

ACS Catal. 2021, 11, 4441-4455, J. Am. Chem. Soc. 2010, 132, 178-184.

of 6PPD

Natural rubber | alternative sources

Natural rubber (NR) is essential in tire formulations

Hevea (currently favored)

Guayule

Russian Dandelion (Taraxagum)

of 6PPD

Food preservatives

Alternative rubber formulations

Natural rubber | alternative antioxidants

Food

preservatives

Amino Acids

L-glutamine: plasticizer, antioxidant, and antireversion agent. **Proteins** served as AOs, plasticizers, cure accelerators, and anti-reversion agents

Rubber Chemistry and Technology, 2015, 88, 310-323.

of 6PPD

Rubber Chemistry and Technology, 2017, 90, 387-404

Alternative rubber formulations

Alternative natural rubbers | a unique opportunity to reformulate the tire

Other explorations into NR AOs:

Chitosan derivatives demonstrated aging protection (Khalaf et. al., 2013)

Oil palm leaves effective for some vulcanization schemes (Komethi et. al., 2011)

Food

preservatives

of 6PPD

Henna - promising alternative to traditional AOs for NR (Öncel et. al., 2019)

Closing

Alternative rubber formulations

Comparison of our strategies

	Modified 6PPD	Food Preservatives	Lignin	Alt. formulations
Itages	Potential "drop in" solution for industry	Food-grade safety	Bio-based	Opportunity to reformulate tire without 6PPD
van	Manufacturing	Already produced in	Well-researched	
Ad	should be relatively easy	large quantities	rubber additive	Potential to source rubber sustainably
ges	Potential to have similar toxic effects	Potentially still has aquatic toxicity	Questionable antiozonant abilities	Extensive research must be conducted
Challen	Modified chemicals difficult to assess for hazards	Thermal stability during processing may be an issue	Not a "drop in" solution	Requires complete overhaul of current manufacturing process

Food preservatives Alternative rubber formulations

THANK YOU!

- → Greener Solutions teaching team
- → Colleen McMahan (USDA)
- → USTMA
- → Berkeley Center for Green Chemistry
- → Flexsys

