Alternatives to Polyethylene Packaging for Frozen Kelp

Eliana Blum, Erin Xavier, Kay Elofson, Sara Susanto, Kaydren Orcutt, Frank Bernal

INTRODUCTION

01

Background, Inspiration, & Approach

D2 STRATEGIES Explanation of

Strategies 1, 2, & 3

DISCUSSION

Comparison of Strategies 1, 2, & 3 04

NEXT STEPS Proposed Solution & Timeline

Noble Oceans Farm

- Noble Ocean Farms is a startup regenerative kelp farming company in Cordova, Alaska
- Their goal is to process and package their kelp for consumer use in order to aid food insecurity
- Initial brief: Vacuum sealable package that can be frozen and compost in 6 months or less

Image from https://www.walmart.com/ip/Vacuum-Sealer-Bag-HURRISE-Vacuum-Sealer-Food-Storage-Saver-Bag-w-Unique-Multi-Layer-Construction/194601508?wmlspartner=wlpa&selectedSe IlerId=101006085

Background: How to make plastic bags

Strategy 1

Ocean life 300 - 400 million years ago dies.

Approach

Over millions of years, remains buried deeper and deeper where the pressure and heat turn it into oil and natural gas.

Strategy 2

Strategy 3

Today we drill down and collect the oil and gas to use for transportation, industrial applications, and power.

Discussion

Next Steps

Background: How to make plastic bags

Introduction

Strategy 1

Strategy 2

Bad Actors

Approach

Strategy 1

Common name or trade name	Grou E	1p I Hu ndpoir	ıman its	Group II and Group II* Endpoints		Ecotoxicity	Fate	Physical Hazard	
Polyethylene, HDPE, LDPE, and monomers	3	DG	DG	3	3	3	3	2	1

Bad	DG = Data	4 = Low	3 = Moderate	2 = High	1 = Very High
Actors	Gap	Hazard	Hazard	Hazard	Hazard

Strategy 2

Strategy 3

Discussion

Next Steps

Introduction

Background: The Problem with Plastics

Strategy 2

Plastics Waste Management: 1960-2018

Figure from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data

Approach

Strategy 1

Introduction

 $\label{eq:Figure adapted from https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data\#PlasticsTableandGraph$

Inspiration: What is also edible, frozen, and packaged?

Strategy 1

Strategy 2

Image from https://www.heb.com/productdetail/ben-amp-jerry-s-red-velvet-cake-icecream/1456681

Approach

Introduction

Strategy 3

Next Steps

Discussion

Vacuum Sealing Requirement

Traditionally, frozen seaweed is vacuum sealed to preserve freshness and prevent freezer burn Initial research showed incompatibility between vacuum sealing and researched bioplastics

So, do we need it?

Strategy 2

Strategy 1

SeaGrove Kelp does not vacuum seal and has no issues. Kelp is frozen in bulk in a blast chiller

Approach

Vacuum sealing compatibility is therefore **no longer a requirement for our polymers**

Strategy 3

Image from https://cottagecityoysters.com/newproducts/frozen-kelp-cubes

Next Steps

Discussion

Introduction

Criteria for a Successful Greener Solution

Barrier Performance: *Water & gas-tight*

Health & Environmental Performance: Biodegradability/compostability

Working Temperature Range: Stable at freezing, room temp, and melting temperatures

Strategy 1

Approach

Strategy 3

Strategy 2

Mechanical Properties: *Flexible & strong*

Discussion

Next Steps

Main Technical Criteria Standards

Approach

Strategy 1

	Barrier Properties			Working Temperature Range			Mechanical Properties		
Name of criteria	Oxygen Permeability	Water Permeability	Cobb60	Kit Value	Glass Transition Temperature	Melting Temperature	Degradation Temperature	Tensile Strength	Elongation at Break (%)
Definition	How much oxygen can penetrate a barrier through time	How much water can penetrate a barrier through time	How much water is absorbed by a material over time	How repellent a material is to liquid	Temperature at which a material transitions to brittle from ductile	Temperature in which a material changes phase from solid to liquid	Temperature in which a material loses fundamental properties	Strength a material can withstand before fracture	Elongation a material can endure before fracture

Strategy 2

Strategy 3

Next Steps

Discussion

Introduction

Main Technical Criteria Standards

Approach

Strategy 1

Introduction

		Barrier Properties				Working Temperature Range			Mechanical Properties	
Name of criteria	Oxygen Permeability	Water Permeability	Cobb60	Kit Value	Glass Transition Temperature	Melting Temperature	Degradation Temperature	Tensile Strength	Elongation at Break (%)	
Good	Less than 20 g/m²/24 hrs	Less than 1 g/m²/24 hrs	Less than 10 g/m ²	7 or greater	Below 5 °C	At least 40°C below Degradation Temp	Above 140°C	Above 10 MPa	At least 100%	
Okay	20 - 100	1 - 50	10 - 50	5 - 6	5 - 60	20 - 40 difference	100 - 140	5 - 10	7% to 100%	
Bad	Greater than 100	Greater than 50	Greater than 50	Less than 5	Greater than 60	Less than 20 different	Less than 100	0 - 5	Less than 7%	

Strategy 2

Strategy 3

Next Steps

Discussion

Strategies Overview

Strategy 1

Bioplastics to replace traditional plastics

Strategy 2

Bioplastic coating/laminate attached to structural material

Strategy 3

Separate inner bioplastic bag with an outer sturdy structural container

Materials: Biodegradable Bioplastics

Polylactic Acid

PIA

Made from corn, among other sources

Already in commercial use

Industrially compostable

PHA

Polyhydroxyalkanoates

Group of polyesters grown using microorganisms

Potentially narrower thermal processing window

Polybutylene succinate

May be fossil or biobased

Durable, but **poor barrier properties**

Next Steps

Discussion

Introduction

Image from: https://key0.cc/freepng/download/83648_Sweet-Corn-Drawing-At-Corn-Clipart,

Strategy 1

Approach

Strategy 2

Materials: Biodegradable Plastics (Additives)

Introduction

Approach Strategy 1

Strategy 2

Strategy 3

Discussion

ÓН

Next Steps

-300-600

ÔH

ÓΗ

Technical performance: Barrier properties

Strategy 1

	O ₂ permeability (g/m²/24 hrs)	H ₂ O permeability (g/m ² /24 hrs)
PLA	3.5 - 15 cm³•mm/m² day atm	12.6
PHA (PHB)	13.4	2.4
PBS	0.97 - 0.99 PO × 10 ¹⁶ [mol/m·s·Pa]	2.73 - 2.75 PWV × 10 ¹² [mol/m·s·Pa]
PCL	775	177
PBAT	600 mL/m²/d/bar	240
TPS	3.53×10 ^{−5} – 1.69×10 ^{−1} g•mm•m ^{−2} h ^{−1} •kPa ^{−1}	0.34 – 0.65 g•mm•m ⁻² h ⁻¹ •kPa ⁻¹
LDPE	19.2	0.037

Strategy 2

Strategy 3

Discussion

Next Steps

Introduction

Approach

Technical performance: Working Temperature Range

	Degradation (°C)	Melting (°C)	Glass transition (°C)	
PLA	300	175	50-80	
PHA (PHB)	220	180	4	
PBS	600	115	-29	v
PCL	380	60	-60	Stiffnac
РВАТ	338	120	-30	
TPS	350	150	-75	
LDPE	370 - 510	110	-30	

Next Steps

Introduction

Strategy 1

Approach

Strategy 2

Strategy 3

Discussion

Technical performance: Mechanical Properties

Strategy 1: Health and Environmental Performance

		Home Compostable	Industrially Compostable
\star	PHA (PHB)	Y	Y
	PLA	Ν	Y
	PBS	Y*	Y
\star	PCL	Y	Y
	PBAT	Y*	Y
\star	TPS	Y	Y
	HDPE/LDPE	N	Ν

Introduction

Strategy 1

Approach

Strategy 2

Strategy 3

Discussion

Strategy 1: Health and Environmental Performance

	PHA (PHB)	PLA	PBS	PCL	PBAT	TPS	Polyethylene
Carcinogenicity	4	4	3	4	DG	3	3
Endocrine Activity	DG	4	DG	DG	DG	3	DG
Systemic Toxicity	DG	3	DG	4	DG	3	3
Respiratory Irritation	1	1	2	2	3	DG	3
Aquatic Toxicity	DG	4	DG	DG	DG	DG	3
Persistence	4	3	3	4	3	4	2

Biopolymers Bad	Actor DG = Data	4 = Low	3 = Moderate	2 = High	1 = Very High
	Gap	Hazard	Hazard	Hazard	Hazard

Strategy 3

Strategy 2

Next Steps

Discussion

Strategy 1

Approach

Introduction

No Such Thing As a Perfect Polymer

Polymer Blends: A Promising Solution

Strategy 1: **Recommended Materials**

	PLA-PCL (80/20)	РНВ-РНО (85/15)	LDPE
Degradation Temp (°C)	329 - 358	264	370 - 510
Melting Temp (°C)	170.3	172 - 178	110
Glass Transition Temp (°C)	56.4	DG	-30
Tensile Strength (MPa)	32.8 - 37.6	12 - 16	10 - 15
Elongation at Break (%)	50.5 - 69.1	8 - 11	300 - 500

Home & Industrial Compostability

igure adapted from Narancic T, Verstichel S, Reddy Chaganti S, et al. Environ Sci Technol. 2018

Discussion

Next Steps

Strategies Overview

Strategy 1

Bioplastics to replace traditional plastics

Strategy 2

Bioplastic coating/laminate attached to structural material

Strategy 3

Separate inner bioplastic bag with an outer sturdy structural container

polysaccharides from marine algae

Great at forming films

Plant-based protein

Derived from corn

Corn allergies

Made from Chitin, 2nd most abundant polysaccharide

From shellfish waste or fungi

Approach

Strategy 1

Strategy 2

Next Steps

Discussion

Strategy 3

Introduction

Materials

PHB: Short-chain PHA

Produced by **bacteria**

Starch

Composed of amylose and amylopectin

Feedstock is food

Technical performance: Barrier properties

		O ₂ permeability (g/m²/24 hrs)	H ₂ O permeability (g/m²/24 hrs)	Cobb60 (g/m²)	Kit value
	Chitosan	low	high	25 to 50	12
	Starch	Very low	Very high	38	7.5
	Alginate	low	high	54 to 149	7 to 12
-	Zein	low	Low with additives	3.1	12
	PHA (PHB)	13.4	2.4	DG	DG
	LDPE	19.2	0.037	30	12

Introduction

Strategy 1

Approach

Strategy 2

Strategy 3

Next Steps

Technical performance: Working Temperature Range

		Degradation (°C)	Melting (°C)	Glass transition (°C)	
	Chitosan	>250	88	140 - 150	
-	Starch	250 - 350	149 - 155	36	
	Alginate	250	220	81	ffnore
	Zein	270 - 415	94	139	Ŭ
-	PHA (PHB)	220	180	4	
	LDPE	370 - 510	110	-30	

Phase Changes with Temperature

Next Steps

Introduction

Approach Strategy 1

Strategy 2

Strategy 3

Discussion

Technical performance: Mechanical Properties

		Tensile strength (MPa)	Elongation at break (%)	
-	Chitosan	22.2 - 39.6	13 - 73.6	
	Starch	poor	2	tress
	Alginate	12.99 - 21.71	4.94 - 5.14	
	Zein	7.1 - 7.7	7	
	PHA (PHB)	40	3 - 6	
	LDPE	10 - 15	300 - 500	

Introduction

> Strategy 1

Approach

> Strategy 2

Technical performance: Mechanical Properties

		Tensile strength (MPa)	Elongation at break (%)		
	Chitosan	22.2 - 39.6	13 - 73.6		
	Starch	poor	2		
	Alginate	12.99 - 21.71	4.94 - 5.14		None of the biopolymers are
	Zein	7.1 - 7.7	7		very flexible
	PHA (PHB)	40	3 - 6		Con stratch it Ex its
	LDPE	10 - 15	300 - 500		original length before it breaks
oduc	ction Appro	ach Strategy 1	Strategy 2	ategy 3	Discussion Next Steps

Introduction

Approach

Strategy 1

Strategy 2

Strategy 3

Discussion

Strategy 2: Health and Environmental Performance

		Home Compostable	Industrially Compostable
\star	PHA (PHB)	Y	Y
\star	Starch	Y	Y
\star	Chitosan	Y	Y
\star	Alginate	Y	Y
\star	Zein	Y	Y
	HDPE/LDPE	Ν	Ν

Strategy 2

Strategy 3

Next Steps

Discussion

Introduction

Approach

Strategy 2: Health and Environmental Performance

	PHA (PHB)	PLA	Cellulose	Starch	Chitosan	Alginate	Zein	Polyethylene
Carcinogenicity	4	4	DG	4	DG	4	DG	3
Endocrine Activity	DG	4	DG	DG	DG	DG	DG	DG
Systemic Toxicity	DG	3	DG	3	4	4	DG	3
Respiratory Irritation	1	1	2	3	3	DG	2	3
Aquatic Toxicity	DG	4	DG	4	2	DG	DG	3
Persistence	4	4	4	4	4	4	DG	2

Biopolymers	Bad Actor	DG = Data Gap	4 = Low Hazard	3 = Moderate Hazard	2 = High Hazard	1 = Very High Hazard
-------------	-----------	------------------	-------------------	------------------------	--------------------	-------------------------

Strategy 3

Next Steps

Discussion

Strategy 2

Strategy 1

Approach

Introduction

Strategy 2: Recommended Materials

Strategy 1

Discussion

Next Steps

Chitosan/Zein and Chipboard

- Chitosan has been applied over paper products to largely improve barrier properties with enough coating weight
- Low O₂ and CO₂ permeability

Approach

- Can be improved by addition of bio-additives such as essential oils and/or glycerine
- Has been sourced from seafood waste which helps minimize environmental strain of manufacturing
- Chipboard is biodegradable and verified to be commonly used in food packaging

Strategy 2

Strategies Overview

Strategy 1

Bioplastics to replace traditional plastics

Strategy 2

Bioplastic coating/laminate attached to structural material

Strategy 3

Separate inner bioplastic bag with an outer sturdy structural container

Strategy 1 + Strategy 2 = Strategy 3

Introduction

Approach

- We suggested **PLA/PCL for strategy 1** and **Chitosan/Zein for strategy 2**, but these are not as good as petroleum plastic standards, even if they are compostable.
- Let's look back and combine some materials we had noted were great
 - For strategy 1, what had the best moisture barrier?

Strategy 1

- For strategy 2, what had the best structural parameters? What was the strongest even if it wasn't the most flexible?
- What if we combine Strategies 1 and 2 to make a new packaging strategy?

Strategy 2

Strategy 3

Discussion

Next Steps

Technical performance: Barrier Properties Internal

		O ₂ permeability (g/m²/24 hrs)	H ₂ O permeability (g/m²/24 hrs)
-	PHA (PHB)	13.4	2.4
	PLA	3.5-15 cm³•mm/m² day atm	12.6
	TPS	3.53×10−5– 1.69×10−1 g•mm•m−2 h−1•kPa−1	0.34–0.65 g•mm•m ⁻² h ⁻¹ •kPa ⁻¹
	LDPE	19.2	0.037

Strategy 1

Strategy 2

Technical performance: Barrier properties External

	O ₂ permeability (g/m²/24 hrs)	H₂O permeability (g/m²/24 hrs)	Cobb60 (g/m²)	Kit value
Chitosan	low	high	25 to 50	12
Starch	Very low	Very high	38	7.5
Alginate	low	high	54 to 149	7 to 12
Zein	low	Low with additives	3.1	12
PHA (PHB)	13.4	2.4	DG	DG
LDPE	19.2	0.037	30	12

Next Steps

Introduction

Strategy 1 Approach

Strategy 2

Technical performance: Working Temperature Range

	degradation (°C)	melting (°C)	glass transition (°C)	
Chitosan	>250	88	140 - 150	
Starch	250 - 350	149 - 155	36	
Alginate	250	220	81	
Zein	270 - 415	94	139	
PHA (PHB)	220	180	4	10:10
PLA-PCL (80/20)	329 - 358	170.3	56.4	
РНВ-РНО (85/15)	264	172 - 178	DG	
LDPE	370 - 510	110	-30	

Strategy 1

Phase Changes with Temperature

Next Steps

>> Approach

Introduction

Strategy 2

 $2 \rightarrow$

Strategy 3

Discussion

Strategy 3: Health and Environmental Performance

Introduction

Approach

Strategy 1

	Home Compostable	Industrially Compostable
PHA (PHB)	Y	Y
TPS	Y	Y
Cellulose	Y	Y
Starch	Y	Y
Chitosan	Y	Y
Alginate	Y	Y
Zein	Y	Y

Strategy 2

Strategy 3

Next Steps

Discussion

Strategy 3: Recommended Materials

Chitosan on chipboard/PHB-PHO (85/15) blend

Strategy 3: Recommended Materials

Chitosan on chipboard/PHB-PHO (85/15) blend

- **Barrier properties:** PHB-PHO has good moisture barrier properties. Chitsan and PHB-PHO have good oxygen barrier properties
- Working temperature range: Neither have glass transition temperatures at freezer temperatures but that is not as important because the packaging can be brittle when there are multiple layers and a structural base (chipboard)
- **Mechanical properties:** Chitosan was the best mechanical properties of all the laminate/coating materials
- **Compostability:** All materials are home compostable

Next Steps

Introduction

Approach 💦 🔪 Strategy 1

Strategy 2

2

Recommended Strategies

Introduction

Approach Strategy 1

Strategy 2

Recommended Strategies

Strategy 1

- 1. Easier implementation
- 2. Simple design \rightarrow less waste
- 3. Thin bag \rightarrow faster biodegradation

Strategy 2

- 1. Chitosan & Chipboard from waste
- 2. Established & scalable manufacturing process
- 3. Chitosan & Zein compounds have proven enhanced properties

CONS

PROS

- 1. Trades off durability for biodegradability
- 2. Must use fossil-based additives

- Must have additives to improve base properties
- 2. May need thicker inner lamination/coating of bioplastic

Strategy 3

- 1. Structural material increases possible bioplastics
- 2. Established & scalable manufacturing process
- 3. Chitosan & Chipboard from waste
- 4. Layers improve overall properties

1. Multiple components \rightarrow increased complexity

 Multiple manufacturing processes → increased cost

Next Steps

Introduction

Approach Strategy 1

Strategy 2

Recommended Strategies

Strategy 1

- 1. Easier implementation
- 2. Simple design \rightarrow less waste
- 3. Thin bag \rightarrow faster biodegradation

Strategy 2

- 1. Chitosan & Chipboard from waste
- 2. Established & scalable manufacturing process
- 3. Chitosan & Zein compounds have proven enhanced properties

PROS

- 1. Trades off durability for biodegradability
- 2. Must use fossil-based additives

- Must have additives to improve base properties
- 2. May need thicker inner lamination/coating of bioplastic

- 1. Multiple components \rightarrow increased complexity
- Multiple manufacturing processes → increased cost

Introduction

Approach

Strategy 2

Strategy 1

Next Steps

2 Soon

Mango Materials produces **PHB films**, has partnered with CPG companies (Consumer Packaged Goods) in the past to produce packaging

<u>Full Cycle</u> bioplastics also does **PHA products**, unsure on films/food packaging

Approach

Strategy 1

Introduction

<u>Sway</u> Company: Seaweed-based packaging but still in **developmental stages**

Strategy 2

Zein/Chitosan films (potentially even edible ones!)

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

Acknowledgements

We would like to thank the Greener Solutions team (Meg, Billy, Kim), our industry mentor (Ryan), and Noble Ocean Farms (Skye) for guidance throughout the project! CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Stories**

Questions?

A critical review on production of biopolymers from algae biomass and their applications - ScienceDirect <u>https://www.sciencedirect.com/science/article/pii/S0960852421002078#!</u> (accessed 2021 -09 -14).

Jian, J.; Xiangbin, Z.; Xianbo, H. An Overview on Synthesis, Properties and Applications of Poly(Butylene-Adipate-Co-Terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research **2020**, *3* (1), 19–26. <u>https://doi.org/10.1016/j.aiepr.2020.01.001</u>

Kopacic, S.; Walzl, A.; Hirn, U.; Zankel, A.; Kniely, R.; Leitner, E.; Bauer, W. Application of Industrially Produced Chitosan in the Surface Treatment of Fibre-Based Material: Effect of Drying Method and Number of Coating Layers on Mechanical and Barrier Properties. *Polymers* **2018**, *10* (11), 1232. <u>https://doi.org/10.3390/polym10111232</u>.

Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-Nanocomposites for Food Packaging Applications. *Progress in Polymer Science* **2013**, *38* (10), 1629–1652. https://doi.org/10.1016/j.progpolymsci.2013.05.008.

Abdel Aziz, M. S.; Salama, H. E.; Sabaa, M. W. Biobased Alginate/Castor Oil Edible Films for Active Food Packaging. *LWT* **2018**, *96*, 455–460. <u>https://doi.org/10.1016/j.lwt.2018.05.049</u>.

Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S. T.; De Wilde, B.; Babu Padamati, R.; O'Connor, K. E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. *Environ. Sci. Technol.* **2018**, *52* (18), 10441–10452. <u>https://doi.org/10.1021/acs.est.8b02963</u>.

Serna, C. P.; Filho, J. F. L. Biodegradable Zein-Based Blend Films: Structural, Mechanical and Barrier Properties. *Food Technol Biotechnol* **2015**, *53* (3), 348–353. https://doi.org/10.17113/ftb.53.03.15.3725.

Cereplast Expands Bioplastic Applications with Freeze-Tolerant Compostable Resin <u>https://materialdistrict.com/article/cereplast-expands-bioplastic-applications-</u> with-freeze-tolerant-compostable-resin/ (accessed 2021 -09 -14).

Rodriguez-Perez, S.; Serrano, A.; Pantión, A. A.; Alonso-Fariñas, B. Challenges of Scaling-up PHA Production from Waste Streams. A Review. *Journal of Environmental Management* **2018**, *205*, 215–230. <u>https://doi.org/10.1016/j.jenvman.2017.09.083</u>.

Yoshida, C. M. P.; Oliveira Junior, E. N.; Franco, T. T. Chitosan Tailor-Made Films: The Effects of Additives on Barrier and Mechanical Properties. *Packaging Technology and Science* **2009**, *22* (3), 161–170. <u>https://doi.org/10.1002/pts.839</u>.

Composting PLA Plastic at Home - Green SXM <u>http://greensxm.com/composting-pla-plastic/</u> (accessed 2021 -11 -16).

Müller, C. M. O.; Laurindo, J. B.; Yamashita, F. Effect of Cellulose Fibers on the Crystallinity and Mechanical Properties of Starch-Based Films at Different Relative Humidity Values. *Carbohydrate Polymers* **2009**, 77 (2), 293–299. <u>https://doi.org/10.1016/j.carbpol.2008.12.030</u>.

Montilla-Buitrago, C. E.; Gómez-López, R. A.; Solanilla-Duque, J. F.; Serna-Cock, L.; Villada-Castillo, H. S. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review. *Starch - Stärke* **2021**, *73* (9–10), 2100060. <u>https://doi.org/10.1002/star.202100060</u>.

In vitro toxicity of bioplastics and plant-based materials | Food Packaging Forum <u>https://www.foodpackagingforum.org/news/in-vitro-toxicity-of-bioplastics-and-plant-based-materials</u> (accessed 2021 -11 -26).

Li, J.; Jinqiang, G.; Sui, G.; Jia, L.; Zuo, C.; Deng, Q. Influence of a Glycerin Additive on the Structure and Water Vapor Permeance of Chitosan Membranes. *Materials Express* **2014**, *4*. <u>https://doi.org/10.1166/mex.2014.1200</u>.

J. Compos. Sci. | Free Full-Text | Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites <u>https://www.mdpi.com/2504-477X/5/2/48</u> (accessed 2021 -11 -24).

Mali, S.; Grossmann, M. V. E.; Garcia, M. A.; Martino, M. N.; Zaritzky, N. E. Microstructural Characterization of Yam Starch Films. *Carbohydrate Polymers* **2002**, *50* (4), 379–386. <u>https://doi.org/10.1016/S0144-8617(02)00058-9</u>.

Deng, Y.; Yu, C.; Wongwiwattana, P.; Thomas, N. L. Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends Through Co-Continuous Phase Morphology. J Polym Environ **2018**, 26 (9), 3802–3816. <u>https://doi.org/10.1007/s10924-018-1256-x</u>.

PBS <u>https://polymerdatabase.com/Polymer%20Brands/PBS.html</u> (accessed 2021 -11 -10).

PET vs. PLA :: MakeltFrom.com <u>https://www.makeitfrom.com/compare/Polyethylene-Terephthalate-PET-PETE/Polylactic-Acid-PLA-Polylactide</u> (accessed 2021 -11 -10).

Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.-J. Petro-Based and Bio-Based Plasticizers: Chemical Structures to Plasticizing Properties. *Journal of Polymer Science Part A: Polymer Chemistry* **2016**, *54* (1), 11–33. <u>https://doi.org/10.1002/pola.27917</u>.

Hoeven, D. van der. PHA: promising, versatile, biodegradable <u>https://www.biobasedpress.eu/2016/08/pha-promising-versatile-biodegradable/</u> (accessed 2021 -11 -17).

Zhou, L.; Wang, Y. Physical and Antimicrobial Properties of Zein and Methyl Cellulose Composite Films with Plasticizers of Oleic Acid and Polyethylene Glycol. *LWT* **2021**, *140*, 110811. <u>https://doi.org/10.1016/j.lwt.2020.110811</u>.

Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J. J.; Farrera-Rebollo, R. R.; Andraca-Adame, J. A.; Arzate-Vázquez, I.; Mendez-Mendez, J. V.; Moreno-Ruiz, L. A. Physical and Structural Characterisation of Zein and Chitosan Edible Films Using Nanotechnology Tools. *International Journal of Biological Macromolecules* **2013**, *61*, 196-203. <u>https://doi.org/10.1016/j.ijbiomac.2013.06.051</u>.

Arvanitoyannis, I.; Biliaderis, C. G. Physical Properties of Polyol-Plasticized Edible Blends Made of Methyl Cellulose and Soluble Starch. *Carbohydrate Polymers* **1999**, *38* (1), 47–58. <u>https://doi.org/10.1016/S0144-8617(98)00087-3</u>.

Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.; Mendoza-Madrigal, A.; Di Pierro, P.; García-Almendárez, B.; Amaro-Reyes, A.; Regalado-González, C. Physical, Structural, Barrier, and Antifungal Characterization of Chitosan–Zein Edible Films with Added Essential Oils. *IJMS* **2017**, *18* (11), 2370. <u>https://doi.org/10.3390/ijms18112370</u>.

Manek, R. V.; Kunle, O. O.; Emeje, M. O.; Builders, P.; Rao, G. V. R.; Lopez, G. P.; Kolling, W. M. Physical, Thermal and Sorption Profile of Starch Obtained from Tacca Leontopetaloides. *Starch - Stärke* **2005**, *57* (2), 55–61. <u>https://doi.org/10.1002/star.200400341</u>.

Plastic made from biomass logs the highest heat resistance on record <u>https://newatlas.com/materials/plastic-biomass-highest-heat-resistance-record/</u> (accessed 2021 -09 -14).

US EPA, O. Plastics: Material-Specific Data <u>https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data</u> (accessed 2021 -09 - 19).

Wang, L.; Zhang, M.; Lawson, T.; Kanwal, A.; Miao, Z. Poly(Butylene Succinate-Co-Salicylic Acid) Copolymers and Their Effect on Promoting Plant Growth. *Royal Society Oper Science* 6 (7), 190504. <u>https://doi.org/10.1098/rsos.190504</u>.

Polymers | Free Full-Text | Poly(butylene succinate) Ionomers with Enhanced Hydrodegradability <u>https://www.mdpi.com/2073-4360/7/7/1232</u> (accessed 2021 -11 -26).

Preparation of Corn Zein Based Biodegradable Resin...(T99030) | UIUC Office of Technology Management <u>https://otm.illinois.edu/technologies/preparation-corn-zein-based-biodegradable-resint99030</u> (accessed 2021 -11 -23).

Cuevas-Carballo, Z. B.; Duarte-Aranda, S.; Canché-Escamilla, G. Properties and Biodegradability of Thermoplastic Starch Obtained from Granular Starches Grafted with Polycaprolactone. *International Journal of Polymer Science* **2017**, *2017*, e3975692. <u>https://doi.org/10.1155/2017/3975692</u>.

Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate-co-Terephthalate) (PBAT) Blends † <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600530/</u> (accessed 2021 -11 -24).

Recent advances in gelatine and chitosan complex material for practical food preservation application - Wang - 2021 - International Journal of Food Science & amp; Technology - Wiley Online Library https://ifst.onlinelibrary.wiley.com/doi/full/10.1111/ijfs.15340 (accessed 2021 -11 -18).

SEABIOPLAS Producing Plastic Sustainably from Farmed Seaweed <u>https://thefishsite.com/articles/seabioplas-producing-plastic-sustainably-from-farmed-seaweed</u>

Photopoulos, J.; Magazine, F. H.; Research, H. T. E.; Magazine, I. Seaweed coffee cups could help ditch single-use plastics <u>https://phys.org/news/2018-10-seaweed-coffee-cups-ditch-single-use.html</u> (accessed 2021 -09 -14).

Siddaramaiah; Swamy, T. M. M.; Ramaraj, B.; Lee, J. H. Sodium Alginate and Its Blends with Starch: Thermal and Morphological Properties. *Journal of Applied Polymer Science* **2008**, *109* (6), 4075–4081. <u>https://doi.org/10.1002/app.28625</u>.

Study finds bioplastics to be just as toxic as regular plastic <u>https://newatlas.com/materials/study-bioplastics-toxic-regular-plastic/?itm_source=newatlas&itm_medium=article-body</u> (accessed 2021 -09 -14).

Wang, Y.; Zhong, Y.; Shi, Q.; Guo, S. Study of the Preparation and Properties of TPS/PBSA/PLA Biodegradable Composites. *Journal of Composites Science* **2021**, *5* (2), 48. <u>https://doi.org/10.3390/jcs5020048</u>.

PubChem. Succinic acid <u>https://pubchem.ncbi.nlm.nih.gov/compound/1110</u> (accessed 2021 -11 -26).

Sustainable innovation – the rise of seaweed-based bioplastics in Europe <u>https://www.innovationnewsnetwork.com/sustainable-innovation-the-rise-of-seaweed-based-bioplastics-in-europe/6513/</u> (accessed 2021 -09 -14).

Pérez-Pacheco, E.; Canto-Pinto, J. C.; Manuel Moo-Huchin, V.; Estrada-Mota, I. A.; Chel-Guerrero, R. J. E.-L. and L. *Thermoplastic Starch (TPS)-Cellulosic Fibers Composites: Mechanical Properties and Water Vapor Barrier: A Review*; IntechOpen, 2016. <u>https://doi.org/10.5772/65397</u>.

Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics—A Review. *Critical Reviews in Food Science and Nutrition* **2014**, *54* (10), 1353–1370. <u>https://doi.org/10.1080/10408398.2011.636156</u>.

Anbukarasu, P.; Sauvageau, D.; Elias, A. Tuning the Properties of Polyhydroxybutyrate Films Using Acetic Acid via Solvent Casting. *Sci Rep* **2015**, *5*, 17884. <u>https://doi.org/10.1038/srep17884</u>.

Nag, A.; Ali, M. A.; Kawaguchi, H.; Saito, S.; Kawasaki, Y.; Miyazaki, S.; Kawamoto, H.; Adi, D. T. N.; Yoshihara, K.; Masuo, S.; Katsuyama, Y.; Kondo, A.; Ogino, C.; Takaya, N.; Kaneko, T.; Ohnishi, Y. Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock. *Advanced Sustainable Systems* **2021**, *5* (1), 2000193. <u>https://doi.org/10.1002/adsu.202000193</u>.

Mali, S.; Sakanaka, L. S.; Yamashita, F.; Grossmann, M. V. E. Water Sorption and Mechanical Properties of Cassava Starch Films and Their Relation to Plasticizing Effect. *Carbohydrate Polymers* **2005**, *60* (3), 283–289. <u>https://doi.org/10.1016/j.carbpol.2005.01.003</u>.

Robertson, N. What Are Bioplastics? https://www.cereplast.com/bioplastics/ (accessed 2021 -09 -14).

Narancic T, Verstichel S, Reddy Chaganti S, et al. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ Sci Technol. 2018;52(18):10441-10452. doi:10.1021/acs.est.8b02963 nova-Institute (Germany), OWS (Belgium), Hydra Marine Science (Italy/Germany), IKT Stuttgart (Germany) in cooperation with DIN CERTCO and TÜV Austria. Biodegradable Polymers in Various Environments According to Established Standards and Certification Schemes – Graphic (PDF).; 2021.

Narancic, T.; Verstichel, S.; Chaganti, S. R.; Morales-Gamez, L.; Kenny, S. T.; Wilde, B. D.; Padamati, R. B.; O'Connor, K. E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environmental Science & Technology 2018.

Nerkar, M.; Ramsay, J. A.; Ramsay, B. A.; Kontopoulou, M. Melt Compounded Blends of Short and Medium Chain-Length Poly-3-Hydroxyalkanoates. J Polym Environ 2014, 22 (2), 236–243. <u>https://doi.org/10.1007/s10924-013-0635-6.</u>

Chen, C.-C.; Chueh, J.-Y.; Tseng, H.; Huang, H.-M.; Lee, S.-Y. Preparation and Characterization of Biodegradable PLA Polymeric Blends. Biomaterials 2003, 24 (7), 1167–1173. <u>https://doi.org/10.1016/S0142-9612(02)00466-0.</u>

Li, Z.; Yang, J.; Loh, X. J. Polyhydroxyalkanoates: Opening Doors for a Sustainable Future. NPG Asia Mater 2016, 8 (4), e265–e265. https://doi.org/10.1038/am.2016.48.

Biobased Polybutylene Succinate (PBS) – An Attractive Polymer for Biopolymer Compounds – Full Version. Succinity GMBH, nova-institute October 2016.

Rastogi VK, Samyn P. Bio-Based Coatings for Paper Applications. *Coatings*. 2015;5(4):887-930. doi:10.3390/coatings5040887 2. Li J, Gao J, Sui G, Jia L, Zuo C, Deng Q. Influence of a glycerin additive on the structure and water vapor permeance of chitosan membranes. *Materials Express*. 2014;4(6):491-498. doi:10.1166/mex.2014.1200

