Alternatives to PFAS in Floor Polish

December 7, 2021

Yuning Xu

MPH in Environmental Health Sciences Class of 2022

Jenna Tan

PhD in Chemistry Class of 2022

Tessa Wardle

MS in Environmental Health Sciences Class of 2022

Overview

- 1. Background
 - a. PFAS
 - b. Current floor polish technology
 - c. Approach
- 2. Strategies
 - a. Rhamnolipids
 - b. Amino acid surfactants
 - c. Technical performance
- 3. Hazard Assessment
- 4. Summary
 - a. Advantages/disadvantages
 - b. Outlook

Why do we care about PFAS in floor polish?

PFAS = Per- and <u>Poly-Fluoralykl</u> <u>Substances</u>

Why do we care about PFAS in floor polish?

Map created by the Environmental Working Group, last updated October 4th, 2021 4

Background

Strategies

Hazard Assessment

Why do we care about PFAS in floor polish?

Image: ECHA, "Emerging Chemical Risk in Europe - PFAS", 2019. 5

Background

Strategies

Hazard Assessment

State of the Floor Polish Industry

- Fluorochemicals commonly used in floor polish: Capstone FS-60 and FS-65
- 2008 survey revealed that nearly every floor polish on the market contained a fluorochemical
 - Existing drive from within industry to remove PFAS
- Primary commercial users: schools, hospitals, retail and grocery stores

Potassium N-ethyl perfluoro alkane sulfonamidoacetate (N-EtFOSAA)

Summary

Strategies

Background

Hazard Assessment

PFAS in floor polish highly effective – posing challenge for comparable replacement

Criteria for a strong PFAS alternative

Strategy 1: Rhamnolipids – bacterially produced surfactants

- Use renewable feedstocks by fermentation
- Stable in wide range of conditions (pH, temp)
- Biodegradable and low toxicity

Liepins, J. *et al.*. Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products. *Fermentation* **2021**, *7*, 136. Image credits: PxHere, Pixabay, Flickr, The Science Explorer

Current commercial applications

Pharmaceuticals

Agriculture

Cosmetics

Bioremediation

.

Background

Strategies

Hazard Assessment

Strategy 2: Amino acids – versatile building blocks to make a variety of surfactants

- Anionic cleaning
- Cationic anti-microbial agent •

Image credits: BioNinja, Pixabay, Flickr

hydrophilic ho HO ONa CH₃(CH₂)₉CH₂ Sigma Aldrich hydrophobic

Sodium lauroyl glutamate (SLG)

- Produce from renewable and raw feedstock (e.g. vegetable oils)
- High surface activity
 - Low toxicity and quick biodegradation

Current commercial applications

Cleaning

Background

Strategies

Hazard Assessment

Summary

Alternatives will need to reduce the energies at the liquid-substrate and liquid-air interfaces

Jarray, Ahmed, et al. "Systematic approach for wettability prediction using molecular dynamics simulations." Soft matter (2020): 4299-

We will also compare levelling and wetting performance by amount of surfactant needed and potential for recoating

Background

Strategies

Hazard Assessment

Technical performance is highly dependent on concentration and surface choice

	Ва	seline Surfac	Alternative Surfactants			
Technical properties	FS-60 FS-65		Sodium dodecyl sulfate (SDS)	Rhamnolipid	Sodium lauroyl glutamate (SLG)	
Water contact angle (°)	N ~51-	n 56°*	H ∼20° at 3.48 mM on PVC	M ∼20° at 1.5 mM on PVC	L 138.69° on sericite (mineral)	
Surface tension	нн		Н	Н	н	
(mN/m)	19 at 0.05% 18 at 0.05%		23.8 - 34.6	26-29	<30	
Critical micelle concentration (mM)	H 0.23*		M 8-8.5	Н 0.41	Н 0.48	
LogKow (octanol water	Μ		Н	L	Н	
partition coefficient)	2.51 (0.276 - 5.99)*		1.69	5.77 (4.22 - 7.38)	0.597*	

* = data for similar compound

The surfactant has assistance in floor polish formulas!

Background

High efficacy (H)

Strategies

Moderate efficacy (M)

Hazard Assessment

Low efficacy (L)

Summary

Tune technical properties with the salt counterion concentration or gemini surfactants

- Different salts with PFAS change surface tension
- Example: changing [Na⁺] for rhamnolipid Wu, L. et al. Comparative studies on the surface/interface properties and aggregation behavior of mono-rhamnolipid and di-rhamnolipid. *Colloids and Surfaces B: Biointerfaces* 181, 593–601 (2019).

- CMC can be up to 2x smaller than monomeric form
- Possibly lower surface tension
- Tunable viscosity
- Increased chemical stability → biodegradation?

Morán, M.C., et al. ""Green" amino acid-based surfactants." *Green Chemistry* (2004): 233-240.

Pinazo, Aurora, et al. "Amino acids as raw material for biocompatible surfactants." *Industrial & Engineering Chemistry Research* 50.9 (2011): 4805-4817.

Background

Strategies

Hazard Assessment

Lifecycle Overview

Hazards During the Life Cycle: Production

 N-EtFOSAA More likely to have occupational exposure Data gaps 		PFBS* • Skin and eye irritation hazard concerns		 Rhamnolipi Low health conduring productio Some data gaps More eco-friend requires less energy during productio 	 Rhamnolipids Low health concerns during production Some data gaps More eco-friendly: requires less energy during production 		 Sodium Lauroyl Glutamate Low health concerns during production Some data gaps 	
Carcinogen	3	Carcinogen	3	Carcinogen 5		Carcinogen	DG	
Mammalian Toxicity	4	Mammalian Toxicity 2		Mammalian Toxicity	4	Mammalian Toxicity	5	
Respiratory Toxicant	DG	Respiratory Toxicant PC		Respiratory Toxicant 4		Respiratory Toxicant LC		
Skin irritation	PC	Skin irritation 1		Skin irritation 4		Skin irritation	2	
Eye irritation	DG	Eye irritation 2		Eye irritation	1	Eye irritation	2	

1 = Very hazardous, 2 = Hazardous, 3 = Moderate, 4 = Low, 5 = Very low *degradation product of N-EtFOSAA

DG = Data Gap, LC = Low Concern, PC = Potential Concern₆

Background

Strategies

Hazard Assessment

Hazards During the Life Cycle: Application

 N-EtFOSAA Environmental hazard concerns Data gaps 		 PFBS Consumer exposure risks Eco toxicity & fate concerns Inhalation exposure 		 Rhamnolip Environmental (aquatic) hazaro concern Eye irritation co Possess antimicrobial 	ids 1 oncerns	Sodium Lauroyl Glutamate • Consumer exposure risks • Eye/skin irritation concerns	
Carcinogen	3	Carcinogen 3		Carcinogen	5	Carcinogen	DG
Repro/Dev	DG	Repro/Dev 2		Repro/Dev	DG	Repro/Dev	PC
Endocrine disruptor	DG	Endocrine disruptor 1		Endocrine disruptor	DG	Endocrine disruptor	DG
Mammalian Toxicity	4	Mammalian Toxicity 2		Mammalian Toxicity	4	Mammalian Toxicity	5
Neurotoxicity	DG	Neurotoxicity 3		Neurotoxicity	DG	Neurotoxicity	DG
Respiratory Toxicant	DG	Respiratory Toxicant PC		Respiratory Toxicant	4	Respiratory Toxicant	LC
Skin irritation	PC	Skin irritation 1		Skin irritation	4	Skin irritation	2
Eye irritation	DG	Eye irritation 2		Eye irritation	1	Eye irritation	2

1 = Very hazardous, 2 = Hazardous, 3 = Moderate, 4 = Low, 5 = Very low

Background

Summary

DG = Data Gap, LC = Low Concern, PC = Potential Concern 17

Hazards During the Life Cycle: Disposal

N-EtFOSAA • Persistence in environment brings in		PFBS • Hazards are		RhamnoliAbility to biod	pids degrade	Sodium Lau Glutamat	Sodium Lauroyl Glutamate • Appears to be safer	
environment brings in relevance of Group 1 endpoints hazard concerns		particularly relevant during disposal as the degradation product		makes Group endpoints less concerning	makes Group 1 endpoints less concerning		 than bad actor in disposal phase Some data gaps 	
Carcinogen	3	Carcinogen	3	Carcinogen	Carcinogen 5		LC	
Repro/Dev	PC	Repro/Dev	2	Repro/Dev	DG	Repro/Dev	PC	
Endocrine disruptor	DG	Endocrine disruptor	1	Endocrine disruptor	DG	Endocrine disruptor	DG	
Aquatic Toxicity	2	Aquatic Toxicity	3	Aquatic Toxicit	y 2	Aquatic Toxicity	LC	
Persistence	1	Persistence	1	Persistence	5	Persistence	5	
Bioaccumulation	PC	Bioaccumulation	PC	Bioaccumulation PC		Bioaccumulation	DG	

DG = Data Gap, LC = Low Concern, PC = Potential Concern

1 = Very hazardous, 2 = Hazardous, 3 = Moderate, 4 = Low, 5 = Very low

Background

Hazard Assessment

Summary

Rhamnolipids and amino acids form environmentally friendly surfactants.

Outlook

Implementing PFAS alternatives

- Final performance in floor polish formulation
- Scaling up production

Rethinking floor polish application

- Necessity of polishing floors
- Different floor materials

Overall formulation

- New paradigm to achieve floor polish effects
- Other toxic ingredients

20

Background

Strategies

Hazard Assessment

Acknowledgements

- Peer mentor: Ned Antell
- Greener Solutions instructional team: Meg, Kim, Billy

Solutions for a Toxic-Free Tomorrow

Patrick MacRoy

Carmine Savaglio

Thank you for listening!

Additional alternatives considered

Sułek, M.W., et al. "Alkyl polyglucosides as components of water based lubricants." *Journal* of surfactants and detergents (2013): 369-375.

Siloxanes/silicones

- Higher surface activity than hydrocarbons (lowers surface tension to values similar to fluorosurfactants)
- But persistent, bioaccumulative, and toxic

Alkyl Polyglucosides

- Can be low-cost and lowecological impact
- Current commercial applications
- Has been tested by floor polish industry and is not successful when mixed into formulation

Turpentine oil

Pine oil

- Active component: turpentine oil
- Current application in detergents/cleaning products
- Concern with skin and eye irritation/corrosivity
- Mixture of chemical constituents

Hazard Table

		N-EtFOSAA	PFBS	PFOS	Rhamnolipid	Sodium lauroyl glutamate	
		67584-51-4	375-73-5	1763-23-1	4348-76-9	29923-31-7	Key
	Carcinogen	3	3	2	5	DG	LC = Low concern
	Mutagen	LC	LC	3	4	LC	PC= Potential concern
Group I endpoints	Repro/Dev	DG	2	1	DG	PC	*prediction based on similar compounds
	Endocrine disruptor	DG	1	1	DG	DG	Color scale:
	Mammalian Toxicity	4*	2	4	4	5	1= Very High Hazard
	Systemic Toxicity	DG	2	1	LC	LC	2= High Hazard
Group II	Neurotoxicity	DG	3	1	DG	DG	3 = Moderate Hazard
endpoints	Respiratory Toxicant	DG	PC	PC	4	LC	4 = Low Hazard
	Skin irritation	PC	1	LC	4	2	5 = Very Low Hazard
	Eye irritation	DG	2	2	1	2	LC = Low Concern
Eco toxicity	Aquatic Toxicity	2*	3	2	2	LC	PC = Potential Concern
Fate	Persistence	1*	1	1	5	5	Bold = confidence in score
	Bioaccumulation	PC*	PC	1	PC	PC	Italicized = potential score