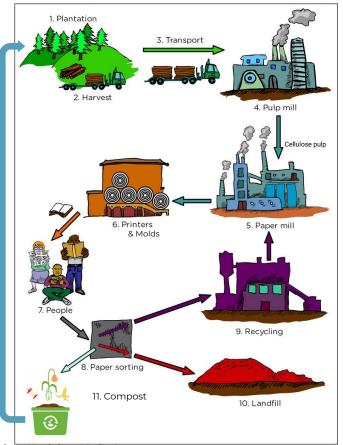
PFAS and Molded fiber: Challenges and Opportunities

Minerva Teli, Kelly Chou, Anna Kurianowicz, Aaron Maruzzo Greener Solutions Fall 2020

OUR CHALLENGE



PFAS-Free Molded Fiber Food Packaging

A replacement for PFAS among molded fiber...

Category 1: Alternatives *Added to* the Paper System

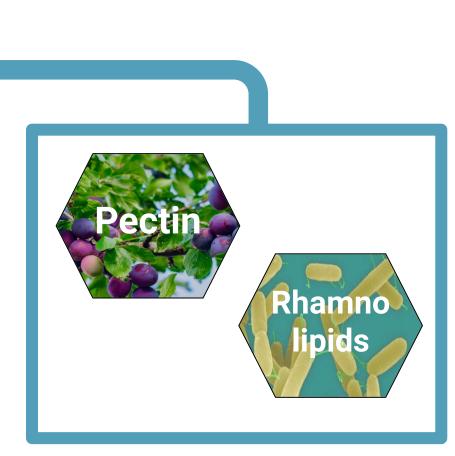
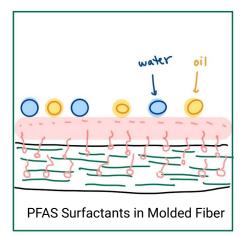
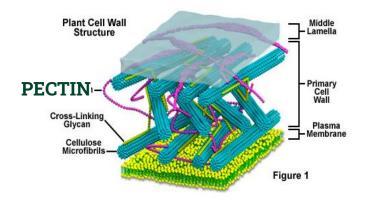
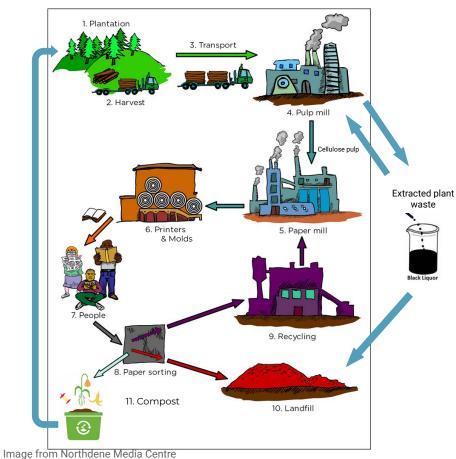



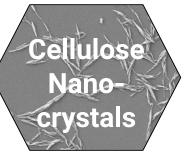
Image from Northdene Media Centre


RHAMNOLIPIDS

Source / Manufacture	Key chemical characteristics	Expected mechanism of action at wet-end	Biodegradable?
microbes, typically Pseudomonas	hydrophilic head and hydrophobic tails	Head groups bind to hydroxyl groups of cellulose, with hydrophobic tails extending out	Yes

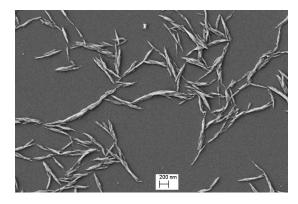
PECTIN

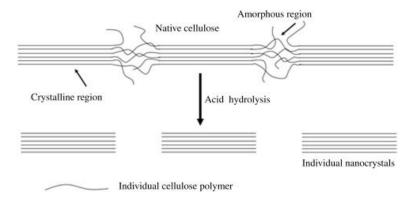


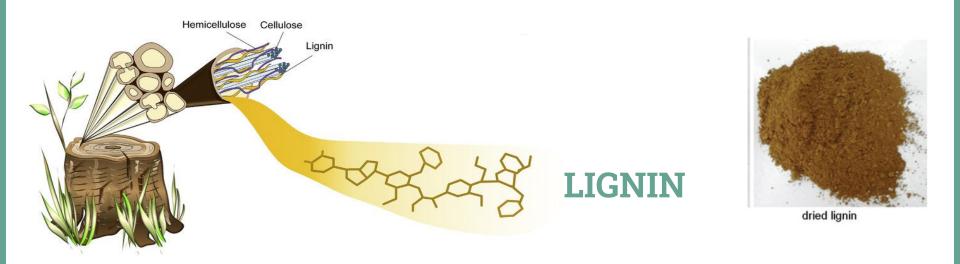

Plums contain pectin

Source / Manufacture	Key chemical characteristics	Expected mechanism of action at wet-end	Biodegradable?
Biopolymer found in ripening fruits	Reduces fiber porosity, and increase barrier properties.	Cross-linking to reduce cell porosity	Yes

Category 2: Alternatives *Within to* the Paper System






7

CRYSTALLINE NANOCELLULOSE

Source / Manufacture	Key chemical characteristics	Expected mechanism of action at wet-end	Biodegradable?
Recycled or newly manufactured cellulose	Improves rigidity and reduces water uptake of cellulose	Cross-linking to reduce cell porosity	yes

Source / Manufacture	Key chemical characteristics	Expected mechanism of action at wet-end	Biodegradable?
Waste from Paper Industry (and ethanol production)	Organic polymer that improves rigidity, thermal stability	Once evenly dispersed, binds with and cross-links cellulose fibers	Yes

Thermal Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards

المسل

Barrier Properties

Surface Properties

Mechanical Properties

Image from <u>US Foods</u>

Thermal Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards

Barrier Properties

Surface Properties

Thermal Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards

Barrier Properties

Surface Properties

Thermal Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards

Barrier Properties

Surface Properties

Thermal Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards

Barrier Properties

Surface Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards

Barrier Properties

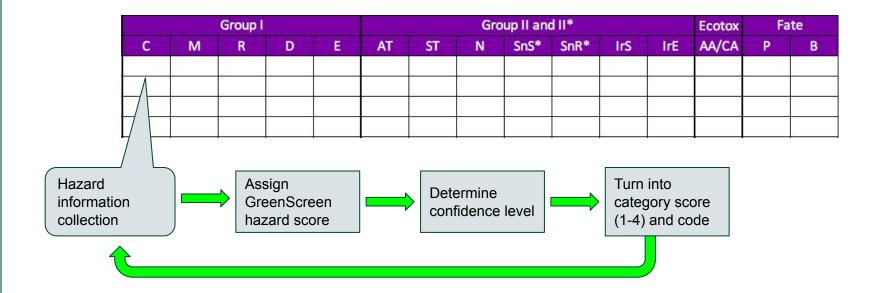
Surface Properties

Thermal Properties

Chemical Properties

End-of-Life Properties

Human and Environmental Hazards



Barrier Properties

Surface Properties

Evaluating toxicities, step-wise:

	Hazard improvements to PFAS	Notes
Pectin	Safer on multiple orders of magnitude for known Group I/II endpoints; non-persistent and non-bioaccumulative	Several hazard data gaps; microbial product
Rhamno lipids	Safer on multiple orders of magnitude for known Group I/II endpoints; non-persistent and non-bioaccumulative	Includes acid digestion of cellulose
Cellulose Nano- crystals	Novel technology; Safer on multiple orders of magnitude for known Group I/II endpoints; non-persistent and non-bioaccumulative	Some amount of uncertainty
Lignin	Largely benign, represents most significant hazard reductions; non-persistent	Utilization of waste product

Possible Usage of Alternatives

Possible Alternatives	Pectin Rhamno lipids Cellulose Nano- crystals	Cellulose Nano- crystals	Rhamno Lignin lipids
Food Type			
Temperature	Room Temp	Hot	Hot
Water Content	Medium	Low	Medium
Oil Content	Low	High	Medium

Thank you!

Special thanks to

Meg Schwarzman Tom McKeag Billy Hart-Cooper Kim Hazard Kaj Johnson, Method Greg Glenn Lauren Olsen Marty Mulvihill Greener Solutions Teams

