Biopolymer Films for Product Packaging

ACS GCE Presentation Spring 2021

Meet The Team

Constancia Dominguez 1st year MS Graduate Student in EHS-IH Program Josué Ruiz 2nd year MPH Graduate Student in Epidemiology & Biostatistics Program Grayson Hamaker-Teals 3rd year undergraduate Chemical Biology Amanda Guan 4th year undergraduate Materials Science, Public Policy

Overview

2

4

- **Introduction** Background
- Strategy 1: Biopolymer Films Polymers from natural sources as a moisture barrier
 - Strategy 2: Chemical Additives Crosslinkers to improve biopolymer properties
 - **Strategy 3: Physical Additives** Nanoclays and nanofibers to reinforce biopolymers
- Questions and Discussion

Paper-based Packaging

Properties

- ✓ Structural integrity
- ✓ Low cost
- ✓ Recyclability, biodegradability
- X Poor moisture barrier

Barrier properties compensated by polyolefins

Introduction Biopolymer Films Chemical Additives

Physical Additive

Proposed Strategies

1: Biopolymer Films

- Polymers derived from natural sources
 - Chitosan
 - Pectin
 - Gelatin

2: Chemical Additives: "Cross-linkers"

- Crosslinking film to improve barrier & mechanical properties with:
 - Genipin
 - Ferulic Acid

3: Physical Additives: "Nanofillers"

- Reinforcing film's barrier & mechanical properties with:
 - Nanoclays
 - Montmorillonite (MMT)
 - Fibers
 - Cellulose
 Nanocrystals

Introduction

Biopolymer Films

Chemical Additives

Physical Additive

Selected biopolymers for film formulation

Introduction Biopolymer Films Chemical Additives Physical Additives Recommendations

Performance criteria for Bad Actors & Biopolymers

		PFAS*	Polyethylene	Polypropylene	Chitin/Chitosan	Pectin	Gelatin	
Barrier Properties	Water Vapor Permeability (WVP) (g/m*day*atm)	Н	н	н	L	L	NA	
	Water Contact Angle	Н	н	Н	н	М	IVI	
Mechanical	Tensile Strength (MPa)	Н	Н	Н	М	М	Н	
Properties	Total Elongation at Break	Н	Н	н	М	L	L	

*Teflon (Polytetrafluoroethylene-PTFE) was used as a baseline for PFAS performance criteria comparisons.

Hazard Assessment for Bad Actors & Biopolymers

Bad Actors & Biopolymers	PFAS	Polyethylene	Polypropylene	Chitin/Chitosan	Pectin	Gelatin
Persistence	Н	Н	Н	L	L	L
Bioaccumulation	н	L	L	L	L	L
Sensitivity / Irritation (Eye, Skin, Respiratory)	М	М	М	L	М	М
Toxicity (Dev & Repro, Systemic, Neuro.)	Н	D	D	L	L	D
Aquatic Toxicity	Н	L	L	М	D	L
Carcinogenicity / Mutagenicity	Н	L	L	L	L	L
Endocrine	Н	D	D	D	D	D

Low Hazard

Medium Hazard

High Hazard

Data Gap

Introduction Technical Performance Health and Environmental Performance Recommendations

Cross-linking

• **Cross-linking** is a "stabilization process in polymer chemistry which leads to multidimensional extension of polymeric chain resulting in network structure."

 Not only does technical performance depend on the **biopolymer combination**, it also depends on the **crosslinker** and the nature of its **crosslinking mechanism**.

Image from

https://www.researchqate.net/publication/263355077 Investigation of Cross-Linked and Additive Containin g Polymer Materials for Membranes with Improved Performance in Pervaporation and Gas Separation

Performance criteria for Crosslinking Reagents

		Glutaraldehyde		Genipin			Ferulic Acid			
Biopolymer		Pectin	Gelatin	Chitosan	Pectin	Gelatin	Chitosan	Pectin	Gelatin	Chitosan
Barrier	Water Vapor Permeability (g*mm/kPa *m2* h)	D	Н	М		н	М	D	М	L
Properties	Water contact Angle	D	D	н	D	D	н	D	D	D
Mechanical Properties	Tensile Strength (MPa)	н	Н	Н	D	н	н	D	М	М
	Total Elongation at Break	н	Н	D	D	L	М	D	L	L

 High Efficiency
 Medium Efficiency
 Low Efficiency
 Data Gap

Introduction Technical Performance Health and Environmental Performance Recommendations

Hazard Assessment for Crosslinking Reagents

Crosslinking Reagents	Glutaraldehyde	Genipin	Ferulic Acid
Persistence	М	L	L
Bioaccumulation	L	D	D
Sensitivity / Irritation (Eye, Skin, Respiratory)	М	D	М
Toxicity (Dev & Repro, Systemic, Neuro.)	Н	L	L
Aquatic Toxicity	н	D	L
Carcinogenicity / Mutagenicity	D	D	L
Endocrine	Н	D	L

Low Hazard

Medium Hazard

High Hazard

Data Gap

Introduction Technical Performa

Health and Environmental Performance Recommendat

Nanofillers: Clays and Fibers

Natural Fibers

ntroduction

Biopolymer Films

Chemical Additives

Physical Additives

Performance criteria for Nanofillers

		Mon	tmorillonite (M	MT)	Cellulose Nanocrystals (CNC)			
Biopolymer		Pectin	Gelatin	Chitosan	Pectin	Gelatin	Chitosan	
	Water Vapor Permeability	Н	н	Н	Н	Н	Н	
Barrier Properties	Water contact Angle	D	D	D	D	D	М	
Mechanical Properties	Tensile Strength (MPa)	Н	н	Н	Н	н	Н	
•	Total Elongation at Break	L	L	L	Н	L	D	

High Efficiency

Medium Efficiency

Low Efficiency

Data Gap

Introduction Technical Performance Health and Environmental Performance Recommendations

Hazard Assessment for Nanofillers

Physical Additives	Montmorillonite	Cellulose Nanocrystal
Persistence	Н	L
Bioaccumulation	L	D
Sensitivity / Irritation (Eye, Skin, Respiratory)	М	н
Toxicity (Dev & Repro, Systemic, Neuro.)	D	L
Aquatic Toxicity	L	L
Carcinogenicity / Mutagenicity	L	L
Endocrine	D	D

Low Hazard **Medium Hazard** High Hazard Data Gap

oduction Technical Performance Health and Environmental Performance Re

Final Assessment

Introduction

Biopolymer Films

nical Additives

Physical Additives

Questions? And Discussions