

# Investigating PFAS Removal Strategies During Carpet Recycling: A Greener Solutions Approach

Ned Antell, Andrew Cullen, & Michael Kado American Chemical Society Conference June 2021

https://www.recyclingproductnews.com/article/34775/californias-carpet-recycling-rate-soars-according-to-annual-report interval of the state of the

1

# The Challenge: Investigate methods of removing PFASs from recycled carpet stock during carpet recycling

- 1. Identify carpet recycling processes and intervention points where PFAS removal methods can be implemented
- 2. Review current PFAS treatment options
- 3. Conduct a comparative chemical hazard assessment on the treatments proposed
- 4. Present the hazards, efficacy and feasibility of each approach

<u>Final Product</u>: To create an opportunity map of the available options for PFAS removal during carpet recycling.

### Carpets and rugs are a major waste stream

- Carpets make up over half of the flooring market and 3% of current landfill volume in the U.S.
- PFAS was added to the synthetic facefibers of carpets and rugs for stain, grease, and oil repellency until 2019.
- ~14 year lifetime of carpet leads to potential for PFAS exposure.



Intervention

Perfluoroalkyl or Polyfluoroalkyl Substances, DTSC, 2019

Strategy 3

Strategy 4 | Perform

Performances Re

Recommendations

# Existing approaches to recycle or dispose of carpet do not remove or treat PFASs





Contaminates ground/surface waters and wastewater effluents with PFAS

https://citytile.net/going-green-recycling-reusing-rethinking-old-rugs/





Releases short-chain PFAS, CFCs, and greenhouse gases

https://www.waste360.com/landfill/worlds-trash-increasingly-ending-incinerators





Reintroduces PFAS into new consumer products that are not controlled

https://www.pca.state.mn.us/waste/construction-and-demol ition-landfills-groundwater

| Background Approach Strategy 1 Strategy 2 Strategy 3 Strategy 4 Performances Recommendations | Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|----------------------------------------------------------------------------------------------|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|----------------------------------------------------------------------------------------------|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# General carpet recycling processes allow for multiple points of intervention



\*These represent general processes and vary based upon recycling center and final products.

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

#### Criteria for Success:

| Human Health & Env. Performance L: Low M:Moderate H: High VH: Very Hi |       |          |           |            |               |            |         | Data Gap        |
|-----------------------------------------------------------------------|-------|----------|-----------|------------|---------------|------------|---------|-----------------|
|                                                                       | Envir | onmental |           |            |               |            |         |                 |
| Constituent                                                           | C/M   | D/R      | Endocrine | Systematic | Neurotoxicity | Irritation | Aquatic | Bioaccumulative |
| PFOA                                                                  | М     | Н        | Н         | Н          | Н             | VH         | М       | Н               |

C/M = carcinogenic/mutagenic, D/R = developmental/reproductive toxicity

| Technical Performance | Good                   | Moderate             | Bad              | [         |                 |             |
|-----------------------|------------------------|----------------------|------------------|-----------|-----------------|-------------|
| Approach              | Removal or Destruction | Time to<br>Implement | Reacti<br>spee   | on<br>d   | Energy<br>Input | Feasibility |
| Example Strategy 1    | Removal                | Immediately          | / Months<br>Year | s to<br>s | High            | Easy        |

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# Proposed Solution #1-Base Hydrolysis + Granular Activated Carbon

Background

Approach

Strategy 1 Strate

tegy 2 Strategy 3

<sup>7</sup> 3 Strategy 4

Performances Reco

#### Base Hydrolysis + Granular Activated Carbon (GAC)



# Base hydrolysis doesn't introduce significant health or environmental hazards

|                      |     |     | Environmental |            |               |            |         |                 |
|----------------------|-----|-----|---------------|------------|---------------|------------|---------|-----------------|
| Constituent          | C/M | D/R | Endocrine     | Systematic | Neurotoxicity | Irritation | Aquatic | Bioaccumulative |
| Sodium<br>Hydroxide  | DG  | DG  | DG            | М          | DG            | VH         | DG      | DG              |
| Hydrochloric<br>Acid | L   | L   | DG            | L          | L             | VH         | L       | L               |

C/M = carcinogenic/mutagenic, D/R = developmental/reproductive toxicity



# Technical Performance of Base Hydrolysis + GAC

|                          | Removal or<br>Destruction | Time to<br>Implement | Reaction speed      | Energy<br>Input | Feasibility |
|--------------------------|---------------------------|----------------------|---------------------|-----------------|-------------|
| Base Hydrolysis +<br>GAC | Removal                   | Immediately          | Minutes to<br>Hours | Low             | Easy        |

| Good Moderate | Bad |
|---------------|-----|
|---------------|-----|

**₩** 

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# Proposed Solution #2-Base Hydrolysis + Reverse Osmosis + Plasma Treatment

Background

Approach

egy 1 Strat

Strategy 2 Strate

rategy 3 Strat

tegy 4 Perfo

Performances Recommenda

#### Base Hydrolysis + Reverse Osmosis (RO) + Plasma treatment



Image source: https://www.hindawi.com/journals/ijmicro/2011/462832/

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# Any destructive treatment adds the potential for HF generation

|                      |     | Environmental |           |            |               |            |         |                 |
|----------------------|-----|---------------|-----------|------------|---------------|------------|---------|-----------------|
| Constituent          | C/M | D/R           | Endocrine | Systematic | Neurotoxicity | Irritation | Aquatic | Bioaccumulative |
| Sodium<br>Hydroxide  | DG  | DG            | DG        | М          | DG            | VH         | DG      | DG              |
| Hydrochloric<br>Acid | L   | L             | DG        | L          | L             | VH         | L       | L               |
| Hydrofluoric<br>Acid | L   | М             | М         | Н          | н             | VH         | М       | VH              |

C/M = carcinogenic/mutagenic, D/R = developmental/reproductive toxicity

Strategy 1

Background

| L: Low | M:Moderate | H: High | VH: Very High | Probable | Data Gap |   |
|--------|------------|---------|---------------|----------|----------|---|
|        |            |         |               |          |          | 1 |

Strategy 2

Recommenda

Performances

# Technical Performance of Base Hydrolysis + RO + Plasma treatment

|                                  | Removal or<br>Destruction | Time to<br>Implement | Reaction speed      | Energy<br>Input | Feasibility   |
|----------------------------------|---------------------------|----------------------|---------------------|-----------------|---------------|
| Base Hydrolysis +<br>RO + Plasma | Destruction               | Months to<br>Years   | Minutes to<br>Hours | High            | Moderate-Easy |

Strategy 2

| Good | Moderate | Bad |
|------|----------|-----|
|------|----------|-----|

Approach

Recommendations

| ackarou  | nd |
|----------|----|
| backgrou | nu |

# Proposed Solution #3-Esterase

**Esterase** Enzyme 0 belle chemical SODIUM HYDROXIDE 100% Sodium Hydroxide Food Grade Lye, Caustic Soda, Drain Cleaner Equivalent to 2½ gallons Drāno<sup>®</sup> - Net Wt. 2 pounds UISON. KEEP OUT OF REACH OF CHILDR Image Source: https://www.researchgate.net/publication/46404626\_Simulatio n\_on\_the\_structure\_of\_pig\_liver\_esterase Recommendations Approach Strategy 3 Performances

Image Source:

Background

https://www.amazon.com/Sodium-Hydroxide-Grade-Caustic-Pound/dp/B 07KNR9SVF

# Pig Liver Esterase has no known hazards!

|                       | Enviro | onmental |           |            |               |            |         |                 |
|-----------------------|--------|----------|-----------|------------|---------------|------------|---------|-----------------|
| Constituent           | C/M    | D/R      | Endocrine | Systematic | Neurotoxicity | Irritation | Aquatic | Bioaccumulative |
| Pig Liver<br>Esterase | DG     | DG       | DG        | DG         | DG            | DG         | DG      | DG              |

C/M = carcinogenic/mutagenic, D/R = developmental/reproductive toxicity

| L: Low | M:Moderate | H: High | VH: Very High | Probable | Data Gap |
|--------|------------|---------|---------------|----------|----------|
|--------|------------|---------|---------------|----------|----------|



## Technical Performance of esterase treatments

|                           | Removal or<br>Destruction | Time to<br>Implement | Reaction speed | Energy<br>Input | Feasibility |
|---------------------------|---------------------------|----------------------|----------------|-----------------|-------------|
| Esterase + GAC            | Removal                   | Months to<br>Years   | Unknown        | Low             | Moderate    |
| Esterase + RO +<br>Plasma | Destruction               | Months to<br>Years   | Unknown        | Medium          | Moderate    |

Good Moderate Bad



| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# Proposed Solution #4-Laccase

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# PFAS Removal Strategies- Laccase Mediator



https://www.frontiersin.org/files/Articles/86385/fenrg-02-00012-HTML-r1/image\_m/fenrg-02-00012-g004.jpg

https://www.creative-enzymes.com/similar/laccase\_388.html

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

### Hazard Information of Laccase Treatment

|                                 | Environmental                                                     |    |    |    |    |    |    |    |  |
|---------------------------------|-------------------------------------------------------------------|----|----|----|----|----|----|----|--|
| Constituent                     | Constituent C/M D/R Endocrine Systematic Neurotoxicity Irritation |    |    |    |    |    |    |    |  |
| Copper(II) sulfate              | DG                                                                | м  | М  | М  | VH | VH | VH | νн |  |
| 1-hydroxybenzotriazole<br>(HBT) | DG                                                                | DG | DG | L  | DG | н  | м  | DG |  |
| Laccase                         | DG                                                                | DG | DG | DG | DG | н  | DG | DG |  |
| Hydrofluoric Acid               | L                                                                 | М  | М  | н  | Н  | νн | м  | L  |  |

C/M = carcinogenic/mutagenic, D/R = developmental/reproductive toxicity

M:Moderate

L: Low

| Background | Ap | proach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendation |
|------------|----|--------|------------|------------|------------|------------|--------------|----------------|

VH: Very High

**Probable** 

Data Gap

H: High

### Technical Performance of Laccase Treatment

|                 | Removal or<br>Destruction | Time to<br>Implement | Reaction speed | Energy<br>Input | Feasibility |
|-----------------|---------------------------|----------------------|----------------|-----------------|-------------|
| Laccase + (GAC) | Destruction               | Long                 | Unknown        | Low             | Difficult   |

| Good Moderate Bad |
|-------------------|
|-------------------|



| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# Conclusions & Remaining Questions

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

# Conclusions

- No solution is without hazard
- Doing something is better than doing nothing
- Choosing the best solution will depend on the specific needs of the recycler



Background

# **Remaining Questions**

#### SCALING UP

- What are the costs of these operations at a larger scale?
- Who would fund the PFAS removal efforts?

#### HEALTH AND ENVIRONMENT

- What are the occupational exposures?
- What is the fate of the adsorbed PFAS?

#### TECHNICAL

- Can these enzymes be optimized such that they are competitive with chemical options?
- How much PFAS will the destructive technologies destroy?



Performances

Recommendations

# Acknowledgements

Big thank you to-

Our Instruction Team- Dr. Meg Schwarzman, Tom McKeag, Dr. Billy Hart-Cooper, and Kim Hazard.

Dr. Simona Balan- DTSC

Dr. Tom Bruton- Green Science Policy Institute

Jackie Killings- K & M Technologies, LLC

Gail Brice and David Ikeda- XT Green

Yunhan Jin

School of Public Health





BERKELEY CENTER FOR GREEN CHEMISTRY

# Questions?



#### References

- Chen, J., Tang, L., Chen, W., Peaslee, W., and Jiang, D.(2020). *Environmental Science & Technology*, 54 (11), 6908-6918. DOI: 10.1021/acs.est.9b06956
- Luo, Q., Yan, X., Lu, J., & Huang, Q. (2018). Perfluorooctanesulfonate Degrades in a Laccase-Mediator System. *Environmental Science and Technology*, 52(18), 10617–10626. https://doi.org/10.1021/acs.est.8b00839
- Luo, Q., Wang, Z., Feng, M., Chiang, D., Woodward, D., Liang, S., ... Huang, Q. (2017). Factors controlling the rate of perfluorooctanoic acid degradation in laccase-mediator systems: The impact of metal ions. *Environmental Pollution*, 224, 649–657. https://doi.org/10.1016/j.envpol.2017.02.050
- Luo, Q., Lu, J., Zhang, H., Wang, Z., Feng, M., Chiang, S. Y. D., ... Huang, Q. (2015). Laccase-Catalyzed Degradation of Perfluorooctanoic Acid. *Environmental Science and Technology Letters*, 2(7), 198–203. <u>https://doi.org/10.1021/acs.estlett.5b00119</u>
- Stoiber, T., Evans, S., & Naidenko, O. V. (2020). Disposal of products and materials containing per- and polyfluoroalkyl substances (PFAS): A cyclical problem. *Chemosphere*, *260*, 127659. https://doi.org/10.1016/j.chemosphere.2020.127659
- Huber, S., Moe, M., Schmidbauer, N., Hansen, G., & Herzke, D. (2009). Emissions from the incineration of fluoropolymer materials. *Nilu*.
- Taylor, P.; Yamada, T.; Striebich, R.; Graham, J.; Giraud, R.(2014) Investigation of Waste Incineration of fluorotelomer-based Polymers as a Potential Source of PFOA in the Environment, Chemos. 110, 17-22.
- Wu, T., & Thanh, C.(2020). Recent progress in adsoptive removal of per- and poly-fluoroalkyl substances (PFAS) from water/wastewater. *Critical Reviews in Environmental Science and Technology*. DOI: 10.1080/10643389.2020.1816125.
- Wu, Y., Romanak, K., Bruton, T., Blum, A., & Venier, M. (2020, April 12). Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. *Chemosphere. 251, 126771.*

# Supplementary Slides

# Nylon face fiber and pH



Journal of Molecular Structure (Theochem) 635 (2003) 83-89

THEO CHEM

www.elsevier.com/locate/theochem

# Effect of fluorine substitution on the rate for ester hydrolysis: estimation of the hydrolysis rate of perfluoroalkyl esters

Tadafumi Uchimaru<sup>a,b,\*</sup>, Shuzo Kutsuna<sup>a</sup>, Asit K. Chandra<sup>a,1</sup>, Masaaki Sugie<sup>a</sup>, Akira Sekiya<sup>a</sup>

<sup>a</sup>Research Center for Developing Fluorinated Greenhouse Gas Alternatives, National Institute of Advanced Industrial Science And Technology (AIST), Higashi, Tsukuba 305-8565 Japan

<sup>b</sup>Research Institute for Computational Sciences, National Institute of Advanced Industrial Science and Technology (AIST), Umezono, Tsukuba 305-8568 Japan

Received 31 January 2002; revised 12 May 2003; accepted 12 May 2003

### Routes of Exposure



#### How to intervene in CA: Safer Consumer Product Regulations (SB 509 & AB 1879)

- Carpets and rugs were listed by DTSC as a proposed priority product in 2018
  - Potential **exposure** to a Candidate Chemical
  - One or more exposures leads to significant or widespread adverse impacts



https://dtsc.ca.gov/scp/

| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|            |          |            |            |            |            |              |                 |

# FIN

# OLDER SLIDES

# **Overview of Proposed Strategies**

- 1. Base Hydrolysis + Granular Activated Carbon (GAC) Adsorption
- 2. Base Hydrolysis + Reverse Osmosis (RO) + Plasma Treatment
- 3. Esterase substitute for Base Hydrolysis
- 4. Enzymatic Laccase



| Background | Approach | Strategy 1 | Strategy 2 | Strategy 3 | Strategy 4 | Performances | Recommendations |
|------------|----------|------------|------------|------------|------------|--------------|-----------------|
|------------|----------|------------|------------|------------|------------|--------------|-----------------|

### Feedback

- Should we include hazards of unkonwn pfas generations?
- Add a slide about mineralization, GAC, other acronyms
- Give time limits for each slide for things
  - $\circ$  Maybe 5 min per approach? = 20 minutes, 5 for intro, 5 for wrapup
- Time at slide 38
- Need to put in CARE as a potential regulatory solution
- Billy:
- Tom:
  - $\circ$  Meth and acrylates for aquatic toxicity
  - How can you mitigate those low scores
- Meg:
  - $\circ$   $\quad$  We must compare to doing nothing, we need to highlight it
  - $\circ \qquad \text{As few tradeoffs as possible}$
- •

#### Outline

Section 1: Background

Section 2: Approach

Section 3: Strategies Strategy 1: Base Hydrolysis + Granular Activated Carbon Strategy 2: Base Hydrolysis + Reverse Osmosis + Plasma Strategy 3: Esterases Strategy 4: Laccases

Section 4: Performance Summaries

Section 5: Recommendations