

Alternatives to DMF-PU Synthetic Leather

Annie LaBine, Isaac Ramphal, Kimberly Hazard, Stephanie Ng & Surui Zhang Greener Solutions: A Safer Design Partnership | Fall 2019

Alternatives to DMF-PU Synthetic Leather

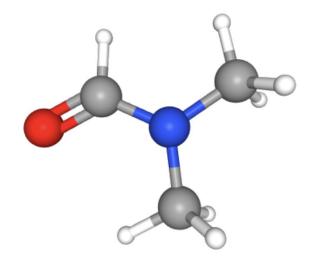
Annie LaBine, Isaac Ramphal, Kimberly Hazard, Stephanie Ng & Surui Zhang Greener Solutions: A Safer Design Partnership | Fall 2019

DMF: Good solvent, bad actor

- N,N-dimethylformamide (DMF) is used extensively in manufacturing of synthetic leather and throughout the textiles supply chain
- Many companies, including Nike, use DMF in polyurethane (PU) synthetic leather production for shoe wear
- DMF is easily absorbed through the skin and can cause liver damage and other adverse health outcomes

Nike is committed to greener chemistry

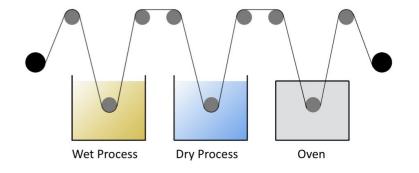
- DMF consists of 10% of total hazardous chemical usage
- Phase out DMF use for synthetic leather by 2025
- Zero Discharge of Hazardous Chemicals (ZDHC) coalition and industry-aligned manufacturing restricted substances list (MRSL)
- Moonshot challenge: double business with half the impact

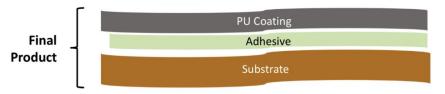


With permission from Nike

Why is DMF used?

- Solvent class: polar aprotic
- Miscible with water and many organic solvents
- Liquid: -60 to 150 C
- Dissolves PU and much more (glue, dyes, surfactants, etc.)
- Inexpensive and produced at scale

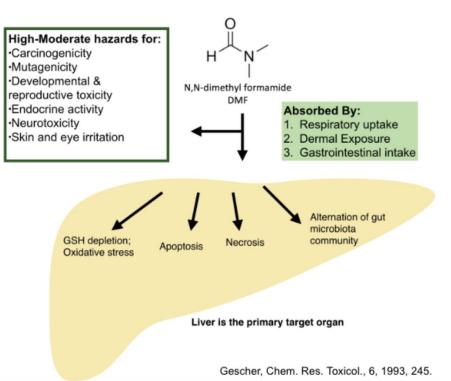



PubChem, 2019

DMF is used throughout manufacturing PU synthetic leather

- Multiple layers of PU on woven backing
- Dissolve PU components in DMF with and without water (wet/dry process)

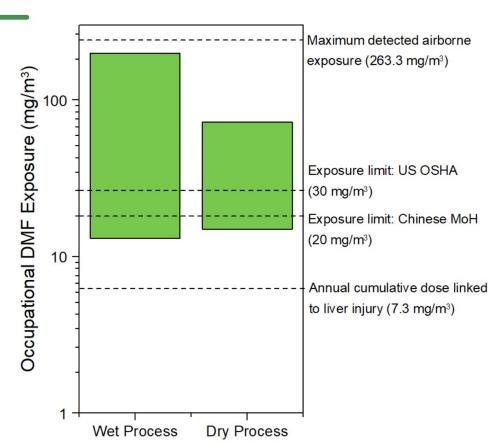
With permission from Nike



DMF is inherently hazardous to human health

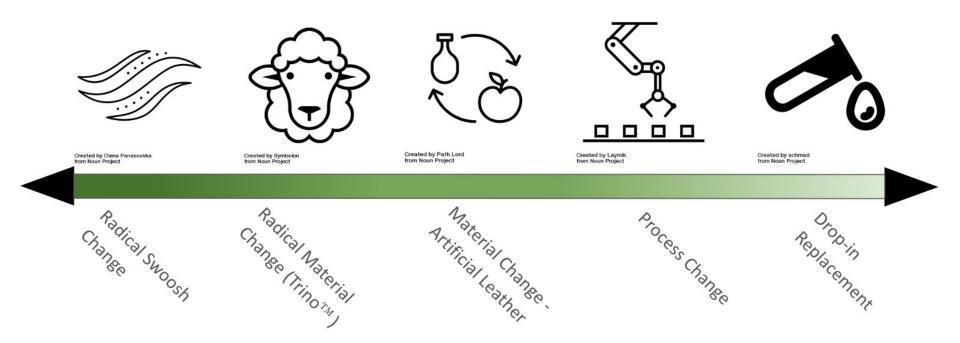
- IARC Group 2A probable carcinogen for humans
- Easily absorbed and targets liver

International Agency Research on Cancer



Workers are exposed to DMF

- Occupational exposure routes: respiratory and dermal
- Lower risk to consumers and environment


Change

The Nike Challenge:

Alternatives to DMF-PU Synthetic Leather

Annie LaBine, Isaac Ramphal, Kimberly Hazard, Stephanie Ng & Surui Zhang Greener Solutions: A Safer Design Partnership | Fall 2019

Places to intervene in the system

Design goals for any alternative

- Reduce or eliminate DMF from process to reduce risk
- Meet Nike's other sustainability goals
- Have same performance as existing solutions (strength, durability, aesthetic)
- Avoid toxic substitutions: DMAc

Performance metrics have changed over time

- Meet strength and aesthetic metrics required in shoes
- Quality metrics differ over time and between materials on the market

With permission from Nike

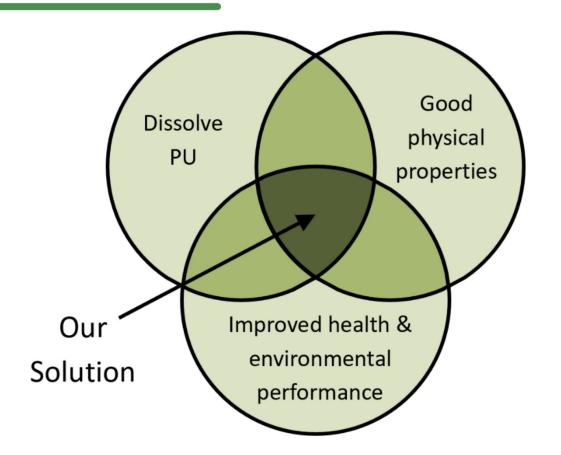
Framing the hazard assessment

- Authoritative lists (e.g. REACH)
- Broad literature searches
- Physical properties
- Modeling/metabolites

Ranking tools:

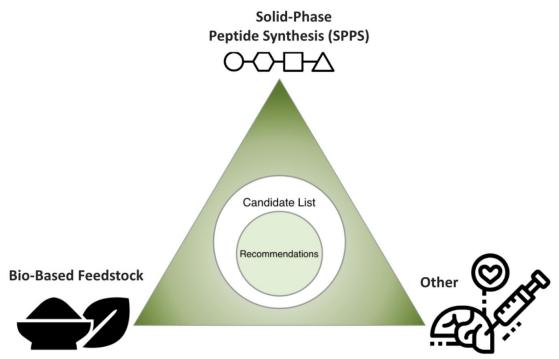
- Globally Harmonized
 System (GHS) categories
- GreenScreen
- Hodge-Sterner

Alternatives to DMF-PU Synthetic Leather


Annie LaBine, Isaac Ramphal, Kimberly Hazard, Stephanie Ng & Surui Zhang Greener Solutions: A Safer Design Partnership | Fall 2019

Benefits of a drop-in solution

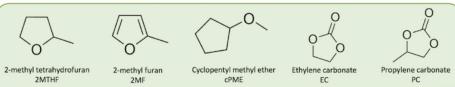
- Lower capital investment
- Broader cross-industry impacts
- Incremental, with wide impact on overall hazardous chemical usage
- Maintain current PU process



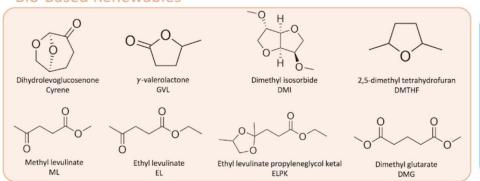
Design Criteria for Drop-in

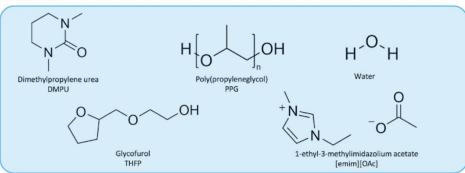
Three categories of drop-in solvents

Supalerk laipawat, Tom Fricker, Samy Menai from Noun Project

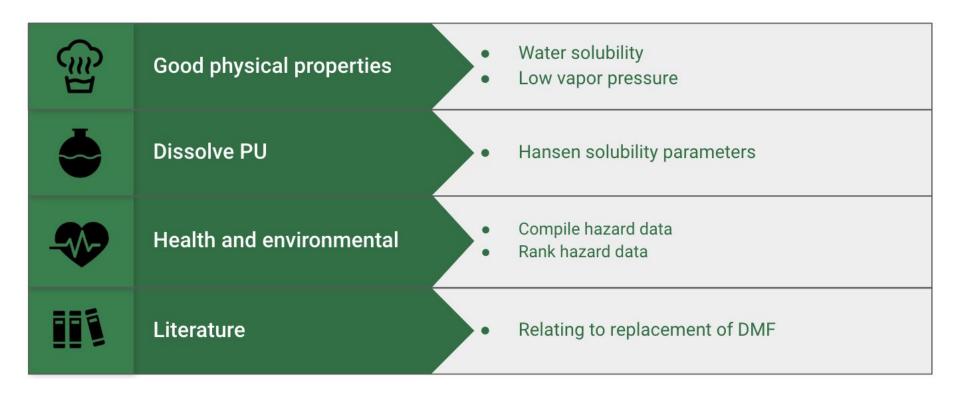


Drop-in candidate list

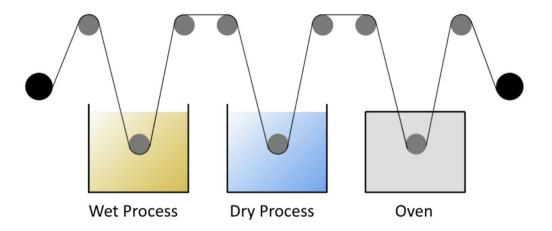

Traditional Polar Aprotics (for comparison)


Solid-Phase Peptide Synthesis

Bio-Based Renewables

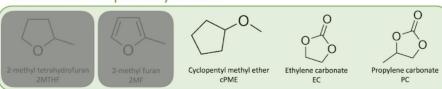


Other

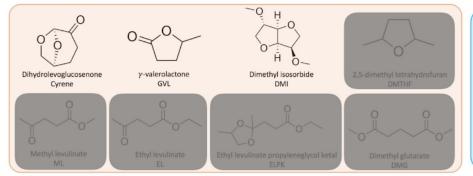

Narrowing our list using the design criteria

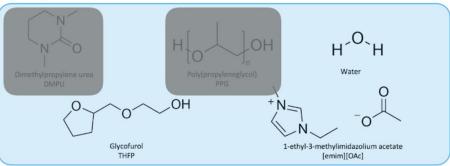
Narrowing through physical properties

- Low vapor pressure/high boiling point
- Water solubility (to wash out)

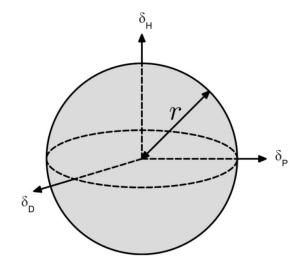


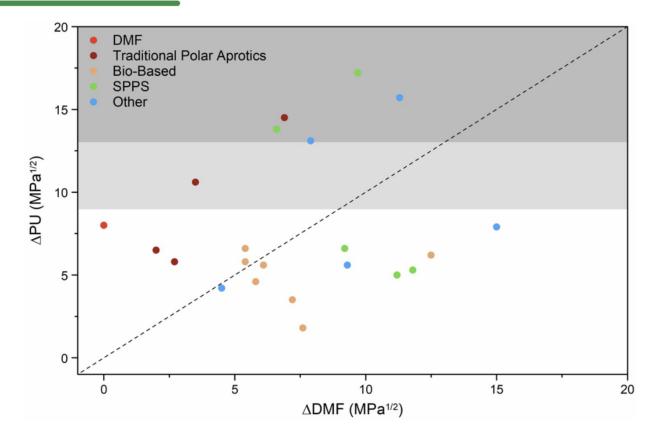
Narrowing through physical properties


Traditional Polar Aprotics (for comparison)

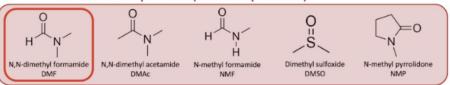

Solid-Phase Peptide Synthesis

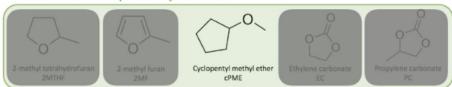
Bio-Based Renewables


Other

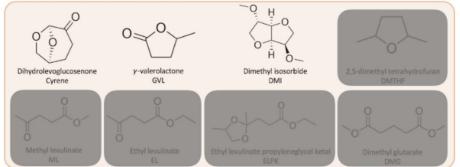

Predicting PU solvation using Hansen solubility parameters

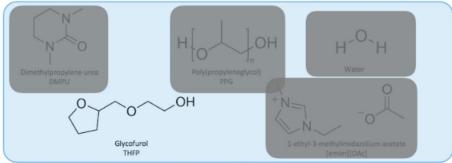
- Hansen solubility parameters:
 - Dispersion forces
 - Polar interactions
 - Hydrogen bonding
- Match solubility parameters of PU (and DMF)
- PU solubility parameters found in literature


Hansen solubility results

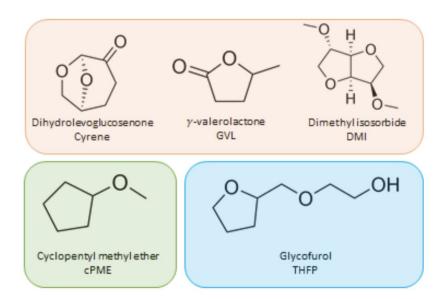


Narrowing through PU solvation


Traditional Polar Aprotics (for comparison)


Solid-Phase Peptide Synthesis

Bio-Based Renewables


Other

Short list: our recommendations

- Bio-based
 - Cyrene
 - GVL
 - DMI
- SPPS
 - cPME
- Other
 - Glycofurol

Evaluation of health and environmental performance of short list

- GHS categories and REACH data
- Translated via GreenScreen

M: Moderate

L: Low

Priority endpoints with sufficient data

H: High

Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	M	M	Ι	M	М

pC: potential concern

Data Gap

Cyrene™ (Dihydrolevoglucosenone)

- Biobased
- Commercial feasibility: feedstock is available, but not widely available by industrial/commercial production
- Emerged from green solvents literature (He, 2017)

Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	M	M	Н	M	М
Cyrene™	L	L	L	M	L	L

DMI (Dimethyisosorbide)

- Biobased
- Closest solubility parameters to PU
- · Available for commercial production and at industrial scale
- Acceptable for pharmaceutical and cosmetic applications

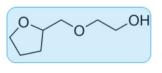
Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	М	M	Н	M	М
DMI	L		L	L	L	М

L: Low	M: Moderate	H: High	pC: potential concern	Data Gap
--------	-------------	---------	-----------------------	----------

GVL (gamma-valerolactone)

- · Bio-based
- Commercial feasibility: feedstock is available, but not widely available by industrial/commercial production
- One of the volatile flavor constituents in mango and honey
- Potential concern for carcinogenicity, mutagenicity, and developmental/ reproductive toxicity via modeling
- Chalid, 2015

Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	M	M	Н	M	М
GVL	рС		L	L	M	L


cPME (Cyclopentyl methyl ether)

- Successful example of solid-phase peptide synthesis (SPPS)
- · Highlighted as green solvent in SPPS literature

Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	M	M	Н	M	М
сРМЕ	L	L	M	М	L	М

L: Low M: Moderate H: High pC: potential concern Data Gap	L: Low	M: Moderate	H: High	pC: potential concern	Data Gap
---	--------	-------------	---------	-----------------------	----------

Glycofurol (THFP)

- Used as a solvent in parenteral pharmaceutical formulations and is generally regarded as relatively nontoxic and nonirritant material at the levels used as a pharmaceutical excipient
- Potential to move into bio based category

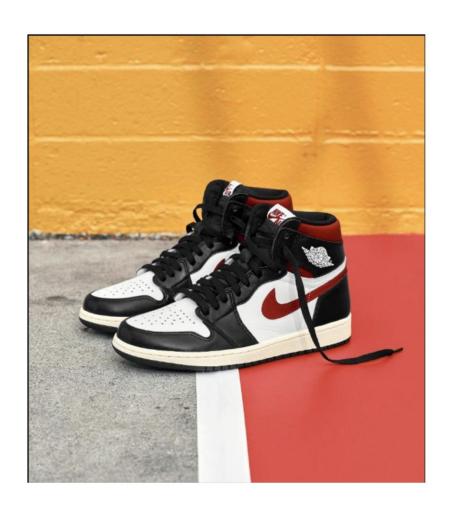
Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	M	M	Н	М	М
THFP				L		М

L: Low M: Moderate H: High pC: potential concern Data Gap

Short list hazard table

Solvent	C/M/R	Systemic	Irritation	Acute	Aquatic	P/B
DMF	Н	М	M	Н	М	M
Cyrene™	L	L	L	M	L	L
DMI	L		L	L	L	М
GVL	рС		L	L	М	L
сРМЕ	L	L	М	M	L	М
THFP				L		М

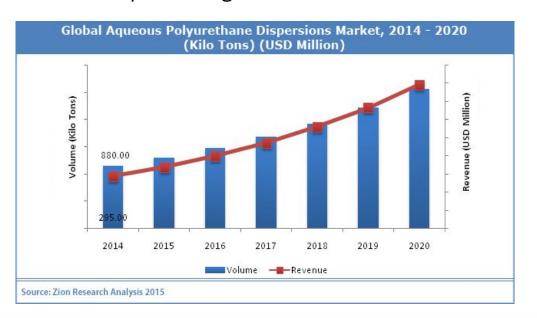
L: Low	M: Moderate	H: High	pC: potential concern	Data Gap
--------	-------------	---------	-----------------------	----------


Next steps for drop-ins

- Make PU: test molecular weight and physical properties
- Neuro tox/ED health impacts

Alternatives to DMF-PU Synthetic Leather

Annie LaBine, Isaac Ramphal, Kimberly Hazard, Stephanie Ng & Surui Zhang Greener Solutions: A Safer Design Partnership | Fall 2019


Process change

PU dispersion Alternative backbone chemistry

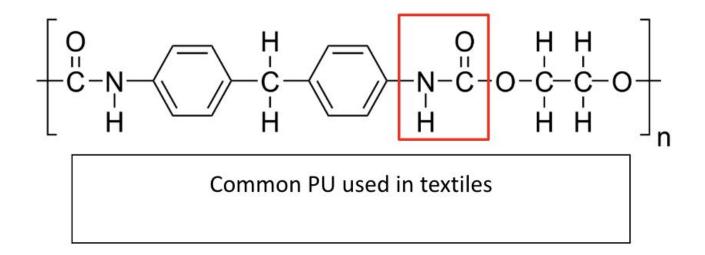
PU dispersion: a growing industry

- Aqueous polyurethane dispersion, waterborne polyurethane dispersion, solvent-free process
- Uses water as the primary solvent
- Polyols + isocyanate monomers + a water-dispersing monomer
- TFL, Bayer, and Evonik have promising PUD for artificial leathers

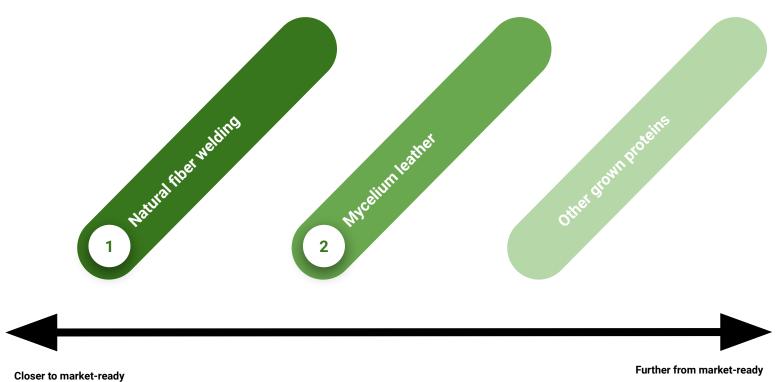
PU dispersion

Potential improvements

- Reduce or eliminate DMF
- Water and energy savings
- Abrasion resistance


Potential concerns

- Cost
- Complete elimination of DMF?
- Color and quality
- Health and safety of additives



Alternative Backbone Chemistry

- Diisocyanates drive the need for aggressive solvent like DMF
- Replacing the isocyanates → No DMF
- Further investigation into PU chemistry and polymerization

Mushroom leather

- Mycelium: the vegetative tissue of fungi, grow into fibrous networks
- Feedstock: agricultural waste

Mycoworks, 2016

Potential improvements

- Eliminates harmful chemicals
- Carbon neutral
- 100% biodegradable
- As strong as conventional leather

Potential concerns

- Cost
- Material grown in 2 weeks
- Other chemicals?

Natural Fiber Welding

- · Crosslinking epoxidized natural oils with citric acid in alcohol solvent
- Short processing times (minutes)
- · Appearance and physical properties similar to natural leather

Hazard Profile of NFW Leather

- Raw and epoxidized soybean oil expected to be safe
- Avoid acetone cosolvent and nitrogen-containing catalysts if possible

Name	C/M/R	Systemic	Irritation	Acute	Neurotoxicity	Aquatic	P/B
Soybean oil	L	L		L			L
Epoxidized soybean oil	L	L	L	L		L	L
Citric acid	L	L	L	L		L	L
Ethanol	L	L	L	L	L	L	L
n-Butanol	L	L	Н	М	L	L	L
Isopropanol	L	L	Н	L	М	L	L
Acetone	L	L	Н	L	L	L	L
Quinoline	Н	рС	Н	М	L	М	L

Next steps for process or material change

Confirm supplier claims

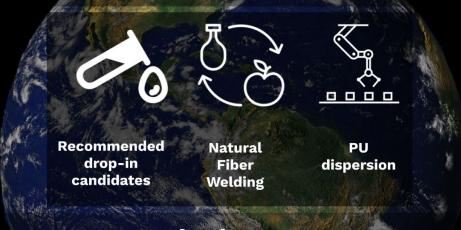
- Material Performance
- Hazard
- Feasibility

Pair with CO2 dying

Recommendations

- Many options presents as an improvement on hazards compared to current DMF-PU process
- Most appealing base on timeline:
 - PU Dispersion
 - Natural Fiber Welding
- Reframe marketing strategy
 - pilot limited edition series using new material ("Mushroom Air Max")

Natural Fiber Welding, Inc., 2019



Alternatives to DMF-PU Synthetic Leather

Annie LaBine, Isaac Ramphal, Kimberly Hazard, Stephanie Ng & Surui Zhang Greener Solutions: A Safer Design Partnership | Fall 2019

Overall, solutions are improvements over DMF-PU

Broader impacts:

- Shift in the fashion and footwear industry
- Creates precedent for biodegradable synthetic fabrics
 - Impacts for global DMF use

Thank you for listening!

Special thanks to:
Meg Schwarzman
Thomas Mckeag
Billy Hart-Cooper
Renee Hackenmiller-Paradis
SLA Team
David Faulkner