

Replacing PFAS In Firefighter Turnout Gear

Greener Solutions | UC Berkeley Fall 2022

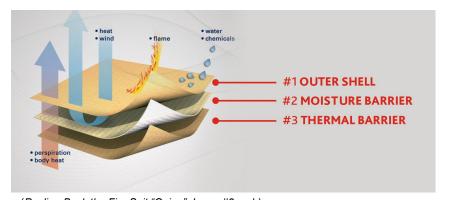
The Team

Grace Campbell Environmental Health Sciences MS Candidate

Sophia Glazer Environmental Health Sciences MPH Candidate Brittany Stinger Chemistry PhD Candidate

McKenna Thompson Environmental Health Sciences MPH Candidate Sophie Thompson Environmental Health Sciences MPH Candidate

Our Partners


Neil McMillan, Director of Science and Research at IAFF Derek Urwin, Assistant Adjunct Professor Chemistry & Biochemistry at UCLA

Challenge

Find safer alternative materials that meet the required functions of the PTFE moisture barrier in firefighter turnout gear

Current Turnout Gear

Typically **3** layers in firefighter turnout gear: **Thermal Layer, Moisture Barrier, Outer Shell**

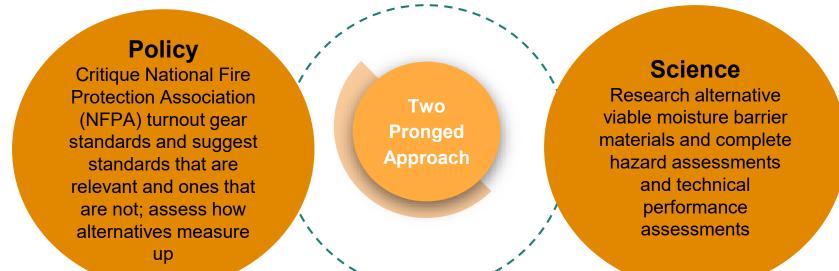
The **Moisture Barrier** contains a **Polytetrafluoroethylene (PTFE)** layer.

PTFE is ...

- a synthetic fluoropolymer (a polymer with multiple fluorine carbon bonds)
- one of the most well-known and applied perand polyfluoroalkyl substances (PFAS) also used in the coating of non-stick cookware.

(Peeling Back the Fire Suit "Onion", Layer #2, n.d.)

PFAS were detected in all three layers of the firefighter turnout gear. While **PTFE** is considered inert, smaller **PFAS** chemicals present on firefighter turnout gear pose a risk to human and environment health. (Graham et al., 2020)


Why does this matter?

Firefighters are disproportionately burdened by cancer

- Firefighting as an occupational exposure is considered a **Class 1 carcinogen** (IARF WHO 2022)
- The leading cause of death in the fire services has gone from cardiac events to cancer (IAFF)
- NIOSH reports firefighters have a 9% higher risk of cancer diagnosis and a 14% higher risk of cancer-caused mortality than the total U.S. population (Daniels et. al., 2013).
- PFAS exposure has been **linked to multiple types of cancers**, including kidney and testicular cancer, among many other health effects (Goodrich et al., 2021)

Approach to Addressing Challenge

Background

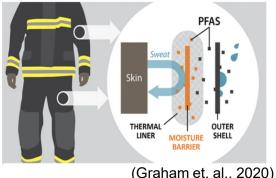
Approach

Inspiration

Fibers

Coatings

Laminates


tes **Conclusion**

Comparison of Standards

Requirements	NFPA (US & Canada)	EN 469 - Level 2 – Structural fires (Europe)	AUS (Australia)	
Heat/Thermal Resistance	Shall not shrink > 10% in any direction.	Shall not shrink > 5% in any direction. No ignition. No melting.	x	
Water Penetration (resistance)	Minimum water penetration resistance of 172 kPa (25 psi).	Minimum water resistance of 20 kPa	Using the rate of water pressure increase of 9.8 mbar/min and water temperature of 20 °C shall achieve ≥ 200 cm of H2O	
Tear resistance	Tear strength of not less than 22 N (5 lbf).	Tear strength of no less than 30 N	Coated materials shall give a tear strength equal to or greater than 25 N	
Flame Resistance	Char length <100 mm . Afterflame< 2 seconds.	X	x	
Cleaning Shrinkage Resistance	Cannot shrink more than 5%	Shall not shrink more than 3 % (woven) Shall not shrink more than 5% (non-woven)	At a temperature of (260 0 +5) °C, no material shall melt, drip, ignite or shrink more than 5 %	
Liquid Chemical Resistance	No liquid can penetrate any sample for 1 hour	No penetration to innermost surface, index of repellency > 80%	Clothing shall give > 80 % run off with no penetration to the innermost surface	
Viral Penetration Resistance	Shall allow no penetration of the Phi-X-174 bacteriophage for at least 1 hour.	x	x	
Light Degradation Resistance	Water shall not appear on the surface of the specimen. *Garment is exposed to harsh light for 40 hours	x	x	
Water Vapor Resistance	x	Must be less than or equal to 30 m²Pa/W	x	
ackground Approact	h Inspiration Fi	bers Coatings	Laminates Conclusion	

NFPA Standards Critique Light Degradation Resistance: The UV Test

- **Unnecessary** for moisture barrier: the middle layer of turnout gear does not come into contact with UV light.
- PTFE is the only material that meets this requirement → Removing the UV test allows for PFAS-free moisture barriers.
- May 2021, a Tentative Interim Amendment was filed by IAFF to remove UV test from the standards but NFPA denied it and subsequent appeals

(Granam et. al., 2020)

"The UV light degradation test for moisture barriers is **illogical**, **not supported by science**, stands as a hurdle to advancing the state of the art in firefighter PPE"

- IAFF TIA Appeal

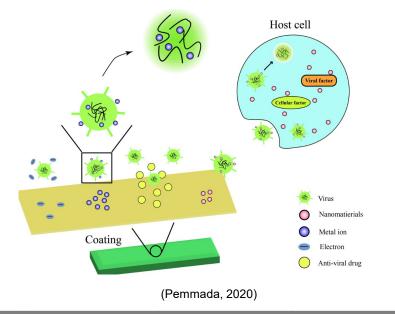
"The UV light test is stopping fire departments from moving towards procurement of PPE that doesn't contain forever chemicals. **Firefighters should be fighting fires, not NFPA and the gear companies.**"

- Retired battalion chief of New Haven CT Fire Department

(Latest, n.d.)

	-	-		-		-			
-			~	ст	r	n		n	d
D		L	N	٢.		U	ч		u
_	-	-		0	-	-	-		—

Fibers



Conclusion

NFPA Standards Critique Viral penetration resistance

- Viral penetration test Resistance to liquid or bloodborne pathogens
- Unnecessary for moisture barrier an inner layer – to meet this standard
- When firefighters act in an paramedic role, they have access to other PPE (gloves, masks, etc) that do meet viral penetration standards

Background

Approach Inspiration

Fibers

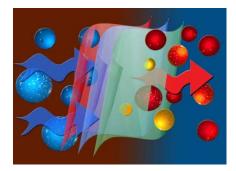
C

Coatings

Laminates

Conclusion 10

Technical Performance Standards


NFPA Standards:

- Heat/Thermal Resistance
- Water penetration (resistance)
- Tear resistance
- Liquid Chemical Resistance (Water contact angle)
- Flame Resistance
- Cleaning Shrinkage Resistance

Additional Standards:

- Water Vapor Permeability
- Water Vapor Resistance
- Pore Size

Step-wise Hazard Assessment

Hazard Ranking:

Categorical = Very High, High, Medium, Low, Very Low

GreenScreen Guidance Doc \rightarrow European Chemicals Agency (ECHA) Dossier \rightarrow Literature Search

Priority Hazards/Population of Concern: Group 1 Endpoints (especially Carcinogenicity) + Firefighters

Confidence Ranking:

High Confidence = Hazard level clearly ranked in GreenScreen

Medium Confidence = Extrapolation from a range from GreenScreen (e.g. given a range of **vH-M**, chose **H**), modeled or unverified value, or extrapolated from different GreenScreen ranking entities

Low Confidence = Values (e.g. NOAELs or LD50s) provided by ECHA and compared to known values from high hazard chemicals or ECHA hazard ranking from preliminary animal studies

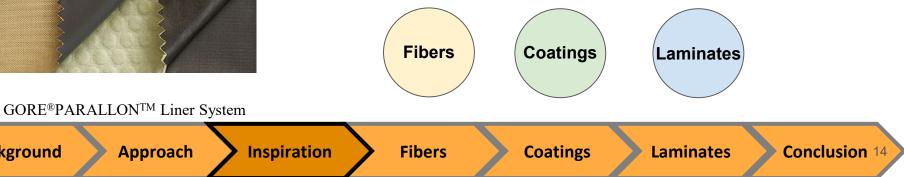
Background	Approach	Inspiration	Fibers	Coatings	Laminates	Conclusion 12

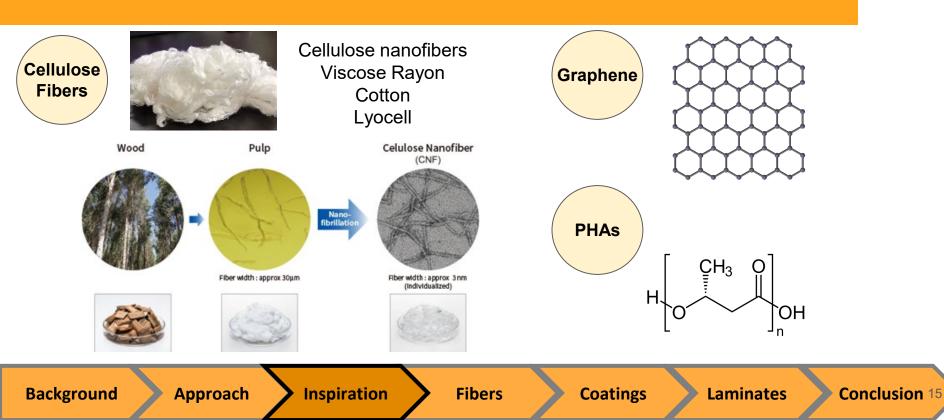
Hazard Assessment

"Bad Actors"

	ors	Group I Human Endpoints			Group II and Group II* Endpoints			Ecotoxicit y	Fate	Physical Hazard
		Carcinoge n./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemi c Toxicity	Neurotoxicit y	Skin, Eye, Respirator y Irritation/ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu	Reactivity, flammability
PTFE + PTFE Monomer	PTFE	М	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	vH	Data Gap
PIFE + PIFE Monomer	TFE	н	vH	Data Gap	н	н	М	Data Gap	vH	н
	PFOA	н	н	н	н	н	vH	М	M vH	Data Gap
C8s/Legacy PFAS	PFOS	н	н	н	н	Data Gap	М	н	vH	Data Gap
C6s/Novel PFAS	GenX	Data Gap	vH	Data Gap	М	Data Gap	vH	Data Gap	vH	L
COSINOVELETAS	PFDeA/PFDA	М	н	н	н	Data Gap	vH	Data Gap	vH	Data Gap
Brominated FR	TBBPA	н	н	н	Data Gap	Data Gap	Data Gap	vH	vH	Data Gap

Major Group 1 & 2 Endpoints


Components of the Moisture Barrier


Background

GORE[®]PARALLONTM Liner System (3 Layers in this moisture barrier):

- 1. Exterior Layer: Nomex, flame resistant fabric, and a laminated ePTFE film
- 2. Middle Layer: KEVLAR/NOMEX blend and a laminated ePTFE film
- 3. Body-Side layer: KEVLAR/ NOMEX, LENZING fiber, and a laminated ePTFE film

Fibers

	Compound	Water Penetration Resistance
	Kevlar (single layer)	
Current Fabrics	Kevlar/Wool Blend (single layer)	
	NOMEX	
Graphene	Graphene Nanofibers	
	Cellulose Nanofibers	
Cellulose Based Fabrics	Lyocell (Tencel)	
Cellulose Dased Fabrics	Cotton	
	Viscose Rayon	
Biobased Fabric	PHA/PHB fibers	

NFPA: >172 kPa (25 PSI)

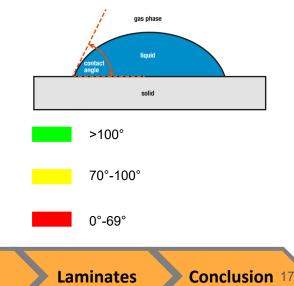
• Measures the amount of water pressure it takes to penetrate a certain distance into a fiber

Background

Approach

Inspiration

Fibers


Coatings

Laminates

Conclusion 16

	Compound	Water Penetration Resistance	Liquid Chemical Resistance <i>Water Contact</i> Angle (degree)
	Kevlar (single layer)		61.2-66.2
Current Fabrics	Kevlar/Wool Blend (single layer)		
	NOMEX		144.7
Graphene	Graphene Nanofibers		95-100
	Cellulose Nanofibers		85.9
Callulace Deced Febrics	Lyocell (Tencel)		
Cellulose Based Fabrics	Cotton		43.9
	Viscose Rayon		
Biobased Fabric	PHA/PHB fibers		118

NFPA: No Liquid can penetrate for 1 hour

	Compound	Water Penetration Resistance	Liquid Chemical Resistance Water Contact Angle (degree)	Thermal Resistance <i>(</i> m² <i>K/W)</i>	NFPA: Shall not shrink >10% in any direction				
	Kevlar (single layer)		61.2-66.2	0.008					
Current Fabrics	Kevlar/Wool Blend (single layer)			0.011					
	NOMEX		144.7						
Graphene	Graphene Nanofibers		95-100	0.09 m K/W	>0.008 m²K/W				
	Cellulose Nanofibers		85.9		<0.008 m² <i>K/W</i>				
Cellulose Based Fabrics	Lyocell (Tencel)								
Cellulose Dased Fabrics	Cotton		43.9	0.01301 m K/W					
	Viscose Rayon			0.189					
Biobased Fabric	PHA/PHB fibers		118						
Background Approach Inspiration Fibers Coatings Laminates Conclusion 18									

	Compound	Water Penetration Resistance	Liquid Chemical Resistance Water Contact Angle (degree)	Thermal Resistance <i>(</i> m²* <i>K/W)</i>	Tear Resistance (Newtons)	NFPA: >22N				
	Kevlar (single layer)		61.2-66.2	0.008	3620 N/mm					
Current Fabrics	Kevlar/Wool Blend (single layer)			0.011						
	NOMEX		144.7		113					
Graphene	Graphene Nanofibers		95-100	0.09 m K/W		>22N				
	Cellulose Nanofibers		85.9			<22N				
Cellulose Based Fabrics	Lyocell (Tencel)				21.7168					
Cellulose Dased Fabrics	Cotton		43.9	0.01301 m K/W	22.78					
	Viscose Rayon			0.189						
Biobased Fabric	PHA/PHB fibers		118		40 N/mm					
Background										

Hazard Assessment Fibers

	Group I Human Endpoints			Group II and Group II* Endpoints			Ecotoxicity	Fate	Physical Hazard
	Carcinogen. /Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory Irritation/ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
Cellulose (Viscose Rayon, Lyocell, Cotton, Cellulose Nanofibers)	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	Ξ	Data Gap	Data Gap	Data Gap

Respiratory Sensitization (relevant to manufacturer exposure)

Background Approach Inspiration Fibers Coatings Laminates Conclusion 20	Background Approach	Inspiration	Fibers	Coatings	Laminates	Conclusion 20
---	---------------------	-------------	--------	----------	-----------	---------------

Hazard Assessment Fibers

	Group I Human Endpoints			Group II	Group II and Group II* Endpoints			Fate	Physical Hazard
	Carcinogen./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory Irritation/ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
Cellulose (Viscose Rayon, Lyocell, Cotton, Cellulose Nanofibers)	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	Н	Data Gap	Data Gap	Data Gap
Short chain PHA Monomers	L	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	L	٧L	Data Gap

Biodegradable Polymer \rightarrow Very Low Persistence and Bioaccumulation

Background

Inspiration

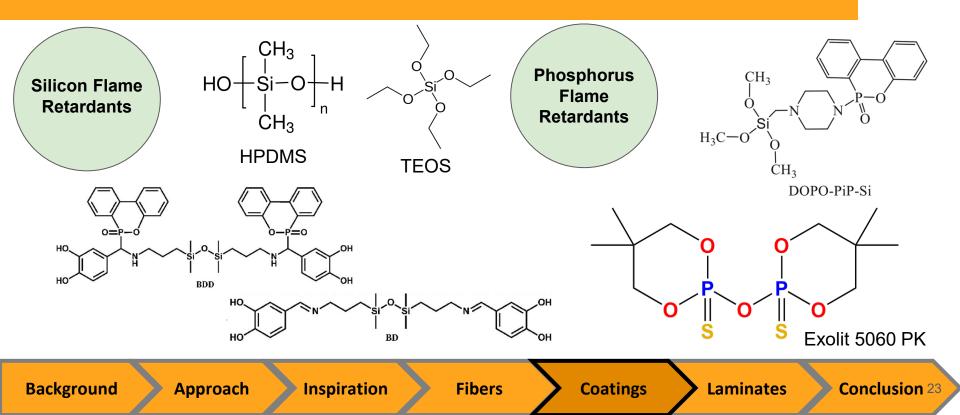
Fibers

Coatings

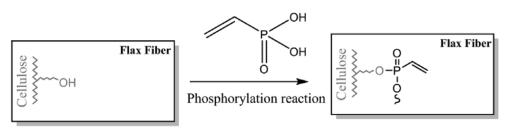
Laminates

Conclusion 21

Hazard Assessment Fibers


	Group I Human Endpoints			Group II	and Group II* E	ndpoints	Ecotoxicity	Fate	Physical Hazard
	Carcinogen./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory Irritation/ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
Cellulose (Viscose Rayon, Lyocell, Cotton, Cellulose Nanofibers)	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	Н	Data Gap	Data Gap	Data Gap
Short chain PHAs Monomers	L	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	L	٧L	Data Gap
Graphene Monomers	L	Data Gap	Data Gap	L	Data Gap	L	М	н	L

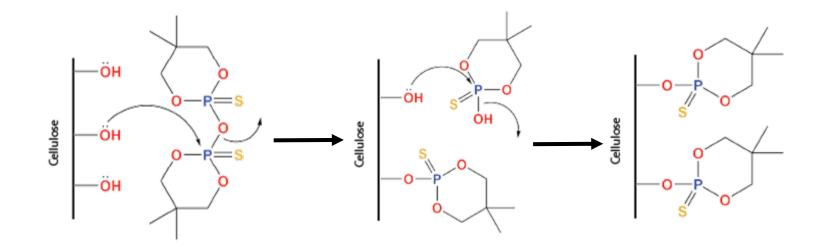
Color Scale: Lighter Color = Less Certainty!


Potentially related to persistence

Persistent

Coatings

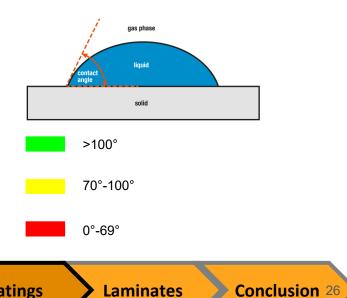
Flame Retardant Coatings are incorporated into fibers



Flame Retardant coatings are incorporated into fibers by reacting with the functional groups on the fiber.

- 1. Decreases flammability of the fiber
- 2. Potentially decreases reactivity enabling it to act as a moisture barrier

Fire Retardant Coatings are incorporated into fibers in two processes



Technical Performance Fibers + Coatings

	Compound	Liquid Chemical Resistance Water Contact Angle (degree)
Phosphorus Based Flame	Viscose Rayon + Exolit 5060 PK	Stable in Acidic and Basic Solution
Retardants	Cotton + DOPO	
	Cotton + BD	
Silicon Based Flame	Cotton + BDD	
Retardants	Cotton + TEOS/HPDMS	>160

NFPA: No Liquid can penetrate for 1 hour

Background

Inspiration

Fibers

Coatings

Laminates

Technical Performance Fibers + Coatings

	Compound	Liquid Chemical Resistance Water Contact Angle (degree)	Thermal Decomposition (5%) Temperature (°C)
Phosphorus Based Flame	Viscose Rayon + Exolit 5060 PK	Stable in Acidic and Basic Solution	
Retardants	Cotton + DOPO		220
	Cotton + BD		162
Silicon Based Flame	Cotton + BDD		225
Retardants	Cotton + TEOS/HPDMS	>160	264

Background Approach Inspiration Fibers Coatings Laminates Conclusion 27

Technical Performance Fibers + Coatings

	Compound	Liquid Chemical Resistance Water Contact Angle (degree)	Thermal Decomposition (5%) Temperature (℃)	Char Length (cm)*
Phosphorus Based Flame	Viscose Rayon + Exolit 5060 PK	Stable in Acidic and Basic Solution		
Retardants	Cotton + DOPO		220	12.2*
	Cotton + BD		162	
Silicon Based Flame Retardants	Cotton + BDD		225	
	Cotton + TEOS/HPDMS	>160	264	8.5*

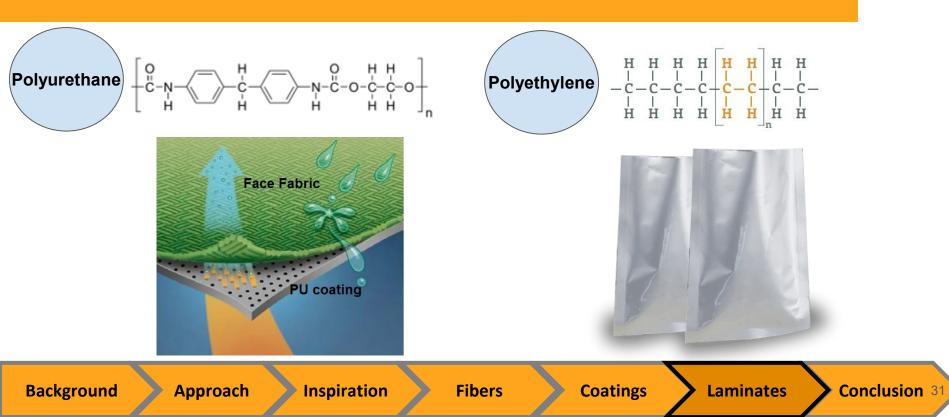
Background	Approach	Inspiration	Fibers	Coatings	Laminates	Conclusion 28

Hazard Assessment

B

Coatings	Group I Human Endpoints			Group II and Group II* Endpoints			Ecotoxicity	Fate	Physical Hazard
	Carcinogen./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin/Eye/ Respirat Irrit./ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
<u> </u>	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	н	Data Gap	Data Gap	Data Gap
Used to make BD & BDD	L	Data Gap	Data Gap	L	Data Gap	м	L	L	Data Gap
Silicon Based Flame Retardants	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	vH	vH	Data Gap	Data Gap
TEOS	Data Gap	L	Data Gap	vH	Data Gap	н	Data Gap	L	м
HPDMS	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	н	Data Gap	L	Data Gap
	Few Gro	oup 1 Enc	lpoints	Ť		1			
				Related t Respirato Irritation	ry	Skin and (less risk	l Eye Irrit to firefig		
ckground Approach	Inspira	ation	Fibe	rs	Coatir	ngs	Lamina	tes	Conclusio

29


Hazard Assessment

Coating	gs	Group I Human Endpoints			Group II and Group II* Endpoints			Ecotoxicity	Fate	Physical Hazard
		Carcinogen./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin/Eye/ Respirat Irrit./ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
		Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	н	Data Gap	Data Gap	Data Gap
		L	Data Gap	Data Gap	L	Data Gap	М	L	L	Data Gap
Silicon Flame	Retardants	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	vH	vH	Data Gap	Data Gap
		Data Gap	L	Data Gap	vH	Data Gap	н	Data Gap	L	М
		Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	н	Data Gap	L	Data Gap
	Exolit 5060 PK		L	Data Gap	L	н	L	М	М	L
Phosphorus Based	DOPO (Novel Phosphorus FR)	Data Gap	Data Gap	Data Gap	Data Gap	Data Gap	н	н	Data Gap	Data Gap
Flame Retardants	Two phosphorus	Data Gap	н	н	vH	н	н	vH	vH	Data Gap
	based pesticides	н	М	н	н	н	н	vH	vH	Data Gap

Data gaps for Novel Phosphorus FRs

Major Group 1 & 2 Endpoints for phosphorus based pesticides = worst case health scenario

Laminates

Technical Performance Laminates

Compound	Water Penetration Resistance	Liquid Chemical Resistance Water Contact Angle (degree)	Thermal Resistance (m²C/W)	Tear Resistance (Newtons)
ePTFE		125.5	0.0671	
Polyurethane	1.0*10^-3-1.0*10^-4 (g/mdayPa)	70	0.0659	
ePolyethylene		126		33.32

Hazards Assessment

Laminates

	Group I Human Endpoints			Group II and Group II* Endpoints			Ecotoxicity	Fate	Physical Hazard
	Carcinogen./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory Irritation/ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
Polyethylene	L	Data Gap	Data Gap	Data Gap	Data Gap	М	Data Gap	vH	Data Gap
Polyethylene Monomer	М	L	Data Gap	М	н	Data Gap	М	Data Gap	н

Potential Group 1 Endpoints

Neurotoxicity

Persistent synthetic polymer

Hazards Assessment

Laminates

	Group I Human Endpoints			Group II	Group II and Group II* Endpoints			Fate	Physical Hazard
	Carcinogen./ Mutagen.	Develop./ Repro. Tox	Endocrine Activity	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory Irritation/ Sensitiz.	Aquatic Tox. Acute/ Chronic	Persistence /Bioaccumu.	Reactivity, flammability
Polyethylene	L	Data Gap	Data Gap	Data Gap	Data Gap	М	Data Gap	vH	Data Gap
Polyethylene Monomer	М	L	Data Gap	М	н	Data Gap	М	Data Gap	н
Polyurethane	L	Data Gap	Data Gap	Data Gap	Data Gap	Н	Data Gap	Data Gap	Data Gap
Polyurethane	М	М	Data Gap	н	Data Gap	Н	Data Gap	Data Gap	Data Gap
Monomers	L	М	Data Gap	М	Data Gap	Н	L	Data Gap	Data Gap

Potential Group 1 Endpoints

Associated with respiratory system \rightarrow Not major firefighter risk

Skin and Respiratory Sensitization

Additional Performance Metrics

Fibers + Laminates

	Compound	Pore Size (diameter, μm)
	Kevlar (single layer)	9.0-12.8
Existing Fabric	Kevlar/Wool Blend (single layer)	
	NOMEX	10-100
Graphene	Graphene Nanofibers	0.003-0.050
Cellulose Based	Cellulose Nanofibers	0.02-0.3
Fibers	Lyocell	0.001-0.1
	Cotton	

Pore Size: Distance between two sides of a pore

Water Vapor (0.0004µm) Liquid Water (1-100µm)

Additional Performance Metrics

Fibers + Laminates

	Compound	Pore Size (diameter, μm)	Water Vapor Transmission Rate (g/(m²day))	Water Vaner Transmission Date: The rate
	Kevlar (single layer)	9.0-12.8	1815.67	Water Vapor Transmission Rate: The rate at which water vapor passes through a
Existing Fabric	Kevlar/Wool Blend (single layer)			fiber or membrane at a certain humidity.
	NOMEX	10-100	1967.13-2151.01	
Graphene	Graphene Nanofibers	0.003-0.050	848.22	>1500
Cellulose Based	Cellulose Nanofibers	0.02-0.3	2.46 (g/(m*s*Pa)*10^-11))	750-1500
Fibers	Lyocell	0.001-0.1	~1000	
	Cotton		1912.36	<1500
Existing Laminate	ePTFE	0.02-10	5000-8000	
Alternative	Polyurethane	677	~1180-1500, 3960-4600	

 Existing Laminate
 EPTPE
 0.02-10
 S000-8000

 Alternative Laminate
 Polyurethane
 677
 ~1180-1500, 3960-4600

 Background
 Approach
 Inspiration
 Fibers
 Coatings
 Laminates
 Conclusion 36

Additional Performance Metrics

Fibers + Laminates

	Compound	Pore Size (diameter, μm)	Water Vapor Transmission Rate (g/(m²day))	Water Vapor Resistance (m²Pa/W)	EN (Europe)
	Kevlar (single layer)	9.0-12.8	1815.67	9.2	<30 m²Pa/W
Existing Fabric	Kevlar/Wool Blend (single layer)			7.3	
	NOMEX	10-100	1967.13-2151.01	2.448-2.836	
Graphene	Graphene Nanofibers	0.003-0.050	848.22		<30
Callulase Read	Cellulose Nanofibers	0.02-0.3	2.46 (g/(m*s*Pa)*10^-11))		>30
Cellulose Based Fibers	Lyocell	0.001-0.1	~1000	4.42	
	Cotton		1912.36	3.305	
Existing Laminate	ePTFE	0.02-10	5000-8000		
Alternative	Polyurethane	677	<mark>~1180-1500, 3960-4600</mark>		
Laminate	Laminate Polyethylene		1.54		
Background	Approach	Inspiration	Fibers Coa	atings Laminates	Conclusion 37

Conclusions and Recommendations Technical Assessment

Fibers

Cellulose Fibers

Meets Tears Resistance Low Water Contact angle

Short Chain PHAs

High Water Contact Angle Data Gaps

Graphene

Low Water Contact Angle Low Thermal Resistance

Silicon Based Flame Retardants

> Increase Water Contact Angle Data Gaps

Phosphorus Based Flame Retardants

Increase Thermal Decomposition Temperature Data Gaps

Polyethylene

High Water Contact Angle Data Gaps on Thermal Resistance

Polyurethane

Low Water Contact Angle Meets other standards

tes Conclusion 38	Laminates Conclusio
minat	La

Conclusions and Recommendations Hazard Assessment

Cellulose Fibers

Manufacturing Risk Data Gaps

Short Chain PHAs

Biodegradable Data Gaps

Graphene

Concerns of Persistence Data Gaps

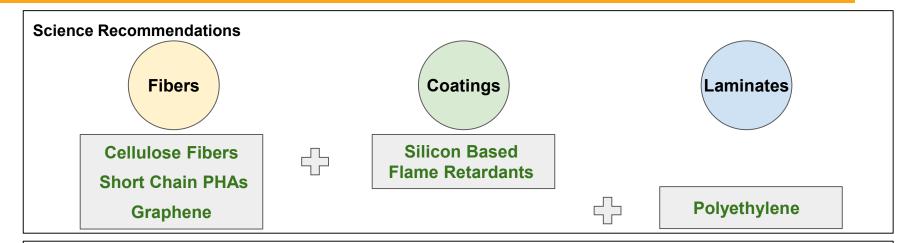
Silicon Based Flame Retardants

> Few Group 1 Endpoints Potential Manufacturer Risk

Phosphorus Based Flame Retardants

Many Group 1 Endpoints Data Gaps for Novel PFRs

Polyethylene


Monomer Potential Carcinogen Polymer Persistence

Polyurethane

Monomer Potential Carcinogen Potential Manufacturer Risk

Conclusions and Recommendations

Policy Recommendations

Background

• We advise the NFPA to *drop the light degradation and viral penetration tests* and keep those that remain.

Fibers

Coatings

Laminates

Conclusion 40

- Light degradation & viral penetration tests result in over-engineered moisture barrier
- Standards are limiting viable PFAS-free options

Approach

Inspiration

Remaining Questions

- We evaluated each of our science strategies (fabrics, fabrics/coatings, laminates) separately, but would combining all three of these produce a better moisture barrier, enhance moisture barrier properties?
- Although phosphorus and silicon based flame retardants could be used in the moisture barrier, they could pose other health hazards to firefighters; data gaps
- How do we balance the health hazards and technical performance in our assessment of the viability of these alternatives?
- Although data gaps exist, our three strategies offer novel suggestions that advance the field of occupational firefighter health

References

- Ahn, C., Yoo, H. J., Oh, Y., Han, S., Lee, H., Kim, J. H., Song, K. Rhie, J. S. Evaluating the Physical and Fabric Hand Characteristics of Lyocell Fabrics Made with Different Wood Pulps. Textile Research Journal, 2015. https://pubs.acs.org/doi/full/10.1021/la304645w
- Aidani, R., Nguyen-Tri, P., Malajati, Y. Lara., J., and Vu-Khanh, T. <u>Photochemical aging of an e-PTFE/NOMEX® membrane used in firefighter protective</u> <u>clothing.</u> Polymer Degradation and Stability, 2013. https://doi.org/10.1016/j.polymdegradstab.2013.04.002
- Australian Standard. (n.d.) Protective clothing for firefighters—Requirements and test methods for protective clothing used for structural firefighting.
- Bhattacharjee, S., et. al. "Graphene Modified Multifunctional Personal Protective Clothing" Adv Mater Interfaces. 6(21) (2019).
- Daniels, R. D., Kubale, T. L., Yiin, J. H., Dahm, M. M., Hales, T. R., Baris, D., Zahm, S. H., Beaumont, J. J., Waters, K. M., & Pinkerton, L. E. (2014). Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occupational and Environmental Medicine, 71(6), 388–397. https://doi.org/10.1136/oemed-2013-101662
- Demers, P. A., DeMarini, D. M., Fent, K. W., Glass, D. C., Hansen, J., Adetona, O., Andersen, M. H., Freeman, L. E. B., Caban-Martinez, A. J., Daniels, R. D., Driscoll, T. R., Goodrich, J. M., Graber, J. M., Kirkham, T. L., Kjaerheim, K., Kriebel, D., Long, A. S., Main, L. C., Oliveira, M., ... Schubauer-Berigan, M. K. (2022). Carcinogenicity of occupational exposure as a firefighter. *The Lancet Oncology*, 23(8), 985–986. https://doi.org/10.1016/S1470-2045(22)00390-4
- European Standards. (n.d.). Protective Clothing for Firefighters Performance requirements for protective clothing for firefighter activities. BSI Standards Limited EN 469:2020.
- Fire Fighter Cancer Awareness Month—IAFF. (n.d.). Retrieved October 24, 2022, from https://www.iaff.org/cancer-awareness-month/
- Goodrich, J. M., Calkins, M. M., Caban-Martinez, A. J., Stueckle, T., Grant, C., Calafat, A. M., Nematollahi, A., Jung, A. M., Graber, J. M., Jenkins, T., Slitt, A. L., Dewald, A., Cook Botelho, J., Beitel, S., Littau, S., Gulotta, J., Wallentine, D., Hughes, J., Popp, C., & Burgess, J. L. (2021). Per- and polyfluoroalkyl substances, epigenetic age and DNA methylation: A cross-sectional study of firefighters. *Epigenomics*, *13*(20), 1619–1636. <u>https://doi.org/10.2217/epi-2021-0225</u>
- Islam, M. S., and van de Ven, T. G. M. (2021). "Cotton-based flame-retardant textiles: A review," BioResources 16(2), 4354-4381.
- Kuang, P. and Constant, K. Increased Wettability and Surface Free Energy of Polyurethane by Ultraviolet Ozone Treatment. 2014. DOI: 10.5772/60798.
- Latest action on firefighting PPE standard underscores the need to better understand and to participate in the standards process | NFPA | NFPA. (n.d.). Retrieved December 5, 2022, from <a href="https://www.nfpa.org/News-and-Research/Publications-and-media/Blogs-Landing-Page/NFPA-Today/Blog-Posts/2021/11/05/Latest-action-on-firefighting-PPE-standard-underscores-the-need-to-better-understand
- Li, K. Clarkson, C. et. al. <u>"Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits"</u> ACS Nano 15, 3, 3646-3673 (2021).
- Li, N., Ming, J. et. al. "Novel Eco-Friendly Flame Retardants Based on Nitrogen-Silicone Schiff Base and Application in Cellulose" ACS Sustainable Chem. Eng. 2020, 8, 290-291. DOI: 10.1021/acssuschemeng.9b05338
- Lin, D. Zeng, X. Li, H., Lai, X. and Wu, T. <u>One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction</u>. Journal of Colloid and Interface Science, 2019. https://doi.org/10.1016/j.jcis.2018.08.060
- Ma, H., Burger, C. Hsiao, B. and Chu, B. <u>Ultra-fine Cellulose Nanofibers: New Nano-scale Materials for Water Purification</u>. Journal of Materials Chemistry, 2011.
- Mahbub, R. F., Wang, L. Arnold, L., Kaneslingam, S. Padhye, R. Thermal Comfort Properties of Kevlar and Kevlar/wool fabrics. 2014. <u>https://doi.org/10.1177/00405175145321</u>

References

- National Fire Protection Association. (2018). NFPA 1971: Standard on Protective Ensembles for Structural Firefighting and Proximity Firefighting.
- Nechyporchuk, O. Bordes, R. Kohnke, T. Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 44, 39069–39077. https://doi.org/10.1021/acsami.7b13466
- Peaslee, G. F., Wilkinson, J. T., McGuinness, S. R., Tighe, M., Caterisano, N., Lee, S., Gonzales, A., Roddy, M., Mills, S., & Mitchell, K. (2020). Another Pathway for Firefighter Exposure to Per- and Polyfluoroalkyl Substances: Firefighter Textiles. *Environmental Science & Technology Letters*, 7(8), 594–599. <u>https://doi.org/10.1021/acs.estlett.0c00410</u>
- Peeling back the fire suit "onion", layer #2: The moisture barrier. (n.d.). Retrieved December 5, 2022, from https://eu.tencatefabrics.com/blog/fire-suit-layer-moisture-barrier
- Pemmada, R., Zhu, X., Dash, M., Zhou, Y., Ramakrishna, S., Peng, X., Thomas, V., Jain, S., & Nanda, H. S. (2020). Science-Based Strategies of Antiviral Coatings with Viricidal Properties for the COVID-19 Like Pandemics. *Materials*, *13*(18), Article 18. <u>https://doi.org/10.3390/ma13184041</u>
- PFAS Exposure and Risk of Cancer—NCI (nciglobal,ncienterprise). (2020, October 15). [CgvArticle]. https://dceg.cancer.gov/research/what-we-study/pfas
- Potential health effects of PFAS chemicals | ATSDR. (2022, September 9). <u>https://www.atsdr.cdc.gov/pfas/health-effects/index.html</u>
- Standards Australia Limited 2019. (2019, June 25). Protective clothing for firefighters Requirements and test methods for protective clothing used for structural firefighting.
- Sun, Y., Chen, W. anad Zhou, X. <u>Thermal insulation fibers with a Kevlar aerogel core and a porous Nomex Shell. Royal Society of Chemistry</u>, 2021. DOI: 10.1039/d1ra06846f
- Suzuki, M., Tachibana, Y., and Kasuya, K. <u>"Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments</u>" Polymer Journal. 53, 47-66 (2021).
- Taherian, F., Marcon, V., van der Vegt, N. and Leroy, F. <u>What is the Contact Angle of Water on Graphene?</u> Langmuir, 2013, 29, 5, 1457-1465. https://doi.org/10.1021/la304645w
- Ting-Ting Li, Peiyao Liu, Hongyang Wang, Wenna Dai, Jie Wang, Zhike Wang, Bing-Chiuan Shiu, Ching-Wen Lou, Jia-Horng Lin. Preparation and characteristics of flexible polyurethane foam filled with expanded vermiculite powder and concave-convex structural panel. *Journal of Materials Research and Technology*, 2021. https://doi.org/10.1016/j.jmrt.2021.03.045
- Velencoso, M., Batting, A. Markwart, J. et. al. <u>"Molecular Firefighting How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame</u> <u>Retardancy</u>" Angewandte Chemie, 57, 33 10450-10467 (2018).
- Wang, S., Chen, W. Xiang, H. et. al. <u>"Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA)"</u> Polymers, 8(8), 273 (2016).
- W. Patrick Arnott, Carl Schmitt, Yangang Liu, and John Hallett, "<u>Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500–5000 cm-1) optical-depth measurement</u>," Appl. Opt. 36, 5205-5216 (1997) https://opg.optica.org/ao/abstract.cfm?URI=ao-36-21-5205
- Weil, E. and Levchik, S. "Phosphorus Flame Retardants" (2017) https://doi.org/10.1002/0471238961.1608151923050912.a01.pub3
- Gong, C., He, Y., Znhou, J. Chen, W. Han, W. Zhang, Z., Zhang, P., Pan, X. Zhiguang, W. and Xie, E. <u>Synthesis on Winged Graphene Nanofibers and Their Electrochemical Capacitive Performance</u>. ACS Appl. Mater. Interfaces 2014, 6, 17, 14844–14850. https://doi.org/10.1021/am5016167 45
- Zhang, Z., Dong, C., Liu, J. Kong, D., Sun, L. and Lu, Z. <u>Preparation of a synergistic reactive flame retardant based on silicon, phosphorus and nitrogen</u> and its application to cotton fabrics. *Cellulose* 27, 1799-1815 (2020)