

NEW APPROACHES IN COTTON CROSSLINKING

GREENER SOLUTIONS 2013

JOE CHARBONNET
JEN LAWRENCE
LEAH RUBIN
SARA TEPFER

CURRENT TECHNOLOGY: WRINKLE RESISTANCE

WRINKLES ARE CREATED BY DISORDERLY HYDROGEN BONDS BETWEEN WATER AND COTTON **DMDHEU** CROSSLINKS COTTON FIBERS IN ORDERED, WRINKLE FREE PATTERN

VARIETY OF NAMES: PERMANENT PRESS, WRINKLE-FREE, EASY CARE, NEVER-IRON

CONTRIBUTES TO FREE FORMALDEHYDE IN FABRICS

CURRENT TECHNOLOGY: WATER REPELLENCY

WATER REPELLENCY ACHIEVED
THROUGH CROSSLINKING TO A
DURABLE WATER REPELLENT [DWR]

LEVI'S COMMUTER JEANS CROSSLINK A PARAFFIN-BASED DWR, ECOREPEL, WITH

DIISOCYANATES

HEALTH IMPACTS

EXPOSURE ROUTES

- · INHALATION OF FUMES
- · ABSORPTION THROUGH SKIN

SEVERE HEALTH ISSUES

- NERVOUS SYSTEM DAMAGE
- ENDOCRINE DISRUPTION
- · NASAL CANCER
- NASOPHARYNGEAL CANCER
- · LEUKEMIA
- · SKIN SENSITIZER
- · RESPIRATORY SENSITIZER

EXPOSURE ROUTES

- MAY BE APPLIED IN GARMENT FORM
- INCREASES EXPOSURE

SEVERE HEALTH ISSUES

- · SKIN, EYE, AND RESPIRATORY IRRITANT
- RESPIRATORY SENSITIZER
- · PRODUCES ASTHMA
- POSSIBLE CARCINOGEN

GOALS

TO DETERMINE WHAT BIOLOGICALLY INSPIRED OPPORTUNITIES EXIST FOR LEVI STRAUSS & CO. TO MODIFY CURRENT CROSSLINKING TECHNOLOGIES USED TO IMPART WRINKLE-RESISTANCE AND WATER-REPELLENCY.

TO EVALUATE SOLUTIONS' HEALTH AND ENVIRONMENTAL IMPACTS RELATIVE TO CURRENT TECHNOLOGIES.

WHAT IS BIOMIMICRY?

BIOMIMICRY IS LEARNING FROM AND THEN EMULATING NATURAL FORMS, PROCESSES, AND ECOSYSTEMS TO CREATE MORE SUSTAINABLE DESIGNS

COVALENT INTERACTIONS

CROSSLINKING STRATEGIES

CONCLUSIONS

NON-COVALENT INTERACTIONS

COORDINATION WITH METALS

STRUCTURAL FEATURES

12 EXAMPLES

COMMON THEMES
MULTIPLE BONDING
TYPES

COVALENT + NONCOVALENT
CROSSLINKING + BONDS
WITH CELLULOSE

STRATEGIES

SOLUTIONS

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

RANASMURFIN

Oke, et al, 2008.

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

RANASMURFIN

COVALENT INTERACTIONS DISULFIDE BONDS

Oke, et al, 2008.

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

RANASMURFIN

COVALENT INTERACTIONS DISULFIDE BONDS

NON-COVALENT INTERACTIONS HYDROGEN BONDS

Oke, et al, 2008.

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

RANASMURFIN

Oke, et al, 2008.

COVALENT INTERACTIONS DISULFIDE BONDS

NON-COVALENT INTERACTIONS HYDROGEN BONDS

ANCILLARY METALS COORDINATION COMPLEXES

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

BIOLOGICAL CROSSLINKING

TEXTILE CROSSLINKING

CROSSLINKING STRATEGIES

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

BIOLOGICAL CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS
- · COORDINATION WITH METALS
- STRUCTURAL FEATURES

TEXTILE CROSSLINKING

12 EXAMPLES

COMMON THEMES
MULTIPLE BONDING
TYPES

COVALENT + NONCOVALENT
CROSSLINKING + BONDS
WITH CELLULOSE

STRATEGIES

SOLUTIONS

BIOLOGICAL CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS
- · COORDINATION WITH METALS
- STRUCTURAL FEATURES

TEXTILE CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS + STRUCTURAL FEATURES

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

BIOLOGICAL CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS
- · COORDINATION WITH METALS
- STRUCTURAL FEATURES

MULTIPLE BONDING POINTS

TEXTILE CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS + STRUCTURAL FEATURES

12 EXAMPLES

COMMON THEMES

MULTIPLE BONDING

TYPES

COVALENT + NONCOVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

BIOLOGICAL CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS
- · COORDINATION WITH METALS
- STRUCTURAL FEATURES

MULTIPLE BONDING POINTS

TEXTILE CROSSLINKING

MULTIPLE BONDING STRUCTURES

- COVALENT INTERACTIONS
- NON-COVALENT INTERACTIONS + STRUCTURAL FEATURES

MULTIPLE BONDING POINTS

• TWO BONDING POINTS

12 EXAMPLES

COMMON THEMES
MULTIPLE BONDING
TYPES

COVALENT + NON-COVALENT
CROSSLINKING + BONDS
WITH CELLULOSE

STRATEGIES

SOLUTIONS

TRADITIONAL CROSSLINKING

12 EXAMPLES

COMMON THEMES
MULTIPLE BONDING
TYPES

COVALENT + NON-COVALENT
CROSSLINKING + BONDS
WITH CELLULOSE

STRATEGIES

SOLUTIONS

TRADITIONAL CROSSLINKING

12 EXAMPLES

COMMON THEMES
MULTIPLE BONDING
TYPES

COVALENT + NON-COVALENT
CROSSLINKING + BONDS
WITH CELLULOSE

STRATEGIES

SOLUTIONS

TRADITIONAL CROSSLINKING

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING **TYPES**

CROSSLINKING + BONDS

STRATEGIES

SOLUTIONS

TRADITIONAL CROSSLINKING

12 EXAMPLES

COMMON THEMES MULTIPLE BONDING **TYPES**

COVALENT + NON-COVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

TRADITIONAL CROSSLINKING

BIOMIMETIC CROSSLINKING

[1] BIND TO CELLULOSE [2] PERFORM CROSSLINK

WRINKLE RESISTANCE

WATER REPELLENCY

12 EXAMPLES

COMMON THEMES

MULTIPLE BONDING

TYPES

COVALENT + NON-COVALENT CROSSLINKING + BONDS WITH CELLULOSE

STRATEGIES

SOLUTIONS

TRADITIONAL CROSSLINKING

BIOMIMETIC CROSSLINKING

WRINKLE RESISTANCE

WATER REPELLENCY

INSPIRED BY THE SLUG, ARION SUBFUSCUS

$$R$$
 + R + R + R + R + R - R -

IMINE BOND CONTRIBUTES TO STIFFNESS OF MUCUS SECRETIONS

REDUCTIVE AMINATION PRODUCES A MORE STABLE BOND

ATTACH CARBONYL GROUPS CROSSLINK WITH DIAMINE

INSPIRED BY THE SLUG, ARION SUBFUSCUS

$$R$$
 + NH_2R' R + H_2O CARBONYL AMINE IMINE

IMINE BOND CONTRIBUTES TO STIFFNESS OF MUCUS SECRETIONS

REDUCTIVE AMINATION PRODUCES A MORE STABLE BOND

ATTACH CARBONYL GROUPS CROSSLINK WITH DIAMINE

LINKING TO COTTON: POLY[CARBOXYLIC ACIDS]

POLY[CARBOXYLIC ACIDS] ARE COMMONLY FOUND IN NATURE

TARTARIC ACID

SUCCINIC ACID

POLY[CARBOXYLIC ACIDS] HAVE BEEN

POLY[CARBOXYLIC ACIDS] ARE COMMONLY FOUND IN NATURE

TARTARIC ACID

SUCCINIC ACID

POLY[CARBOXYLIC ACIDS] HAVE BEEN CYCLIC ANHYDRIDE INTERMEDIATE

$$\begin{array}{c}
 + O \\
 + H_2O \\
 - H_2O
\end{array}$$

$$\begin{array}{c}
 + O \\
 + O \\$$

BIOLOGICAL ORIGINS

WOOD CELL WALL

- HIGH NUMBER OF HYDROGEN BONDS
- STRUCTURAL INTEGRATION

INDUSTRY PRECEDENT

USE OF POLYMERS

 CURRENTLY COAT FIBERS AND BLEND **POLYESTERS**

MOTIVATION

FUNCTIONALIZE CELLULOSE

- BETTER CROSSLINKING HANDLES
- · COATING PROCESS
- · COAT FIBER OR FABRIC WITH NON-COVALENTLY BOUND POLYMER FOR BETTER CROSSLINKING

LINKING TO COTTON: POLYMER WEAVE

CROSSLINK TO BLENDED **POLYESTER**

- · LS & CO. OFTEN USES PET
- BLENDED POLYESTER MAY PROVIDE **CROSSLINKING SITES**

POLYETHYLENE TEREPHTHALATE, THE MOST COMMON POLYESTER IN **TEXTILES**

CROSSLINKING STRATEGIES

CONCLUSIONS

COAT FIBERS OR FABRIC WITH MORE CROSS-LINKABLE POLYMER

- POLYMERS ALREADY COATED ON FIBERS DURING SIZING
- MODIFIED SIZES OR NEW POLYMERS MAY PROVIDE CROSSLINKING SITES

$$\left\{\begin{array}{c} \\ \\ \\ \end{array}\right\}_n$$
 OH

POLY[VINYL ALCOHOL]

THIOLATED PVA

POLY[METHACRYLIC ACID]

LINKING TO COTTON: IN SITU POLYMERIZATION

COAT FIBERS OR FABRIC WITH MORE CROSS-LINKABLE POLYMER

- ENABLES APPLICATION IN FABRIC OR GARMENT FORM
- PREVIOUS USE IN TEXTILE INDUSTRY FOR DIFFERENT FUNCTIONALITIES [EG. LEVI'S REVEL LINE, CONDUCTIVE FABRICS, ETC.]

CONTEXT

INNOVATION ADDITIONAL RESEARCH NEEDED MAJOR HURDLES ANTICIPATED MINOR HURDLES OPTIMIZATION ONLY

INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY
	CHEMICAL SUPPLY	SPECIAL MANUFACTURE	LIMITED AVAILABILITY	WIDE AVAILABILITY
DISRUPTION OF INFRASTRUCTURE				

INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY	
	CHEMICAL SUPPLY SPECIAL MANUFACTURE		LIMITED AVAILABILITY	WIDE AVAILABILITY	
DISRUPTION OF INFRASTRUCTURE	FABRIC APPLICATION	NEW PROCESS	MODIFY EXISTING PROCESS	USES EXISTING PROCESS	

INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY
	CHEMICAL SUPPLY	SPECIAL MANUFACTURE	LIMITED AVAILABILITY	WIDE AVAILABILITY
DISRUPTION OF INFRASTRUCTURE	FABRIC APPLICATION	NEW PROCESS	MODIFY EXISTING PROCESS	USES EXISTING PROCESS
	CROSSLINKING STEP	NEW EQUIPMENT	NEW CHEMICALS, SOLVENTS	HEAT OR AIR CURED

INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY
	CHEMICAL SUPPLY	SPECIAL MANUFACTURE	LIMITED AVAILABILITY	WIDE AVAILABILITY
DISRUPTION OF INFRASTRUCTURE	FABRIC APPLICATION	NEW PROCESS	MODIFY EXISTING PROCESS	USES EXISTING PROCESS
	CROSSLINKING STEP	NEW EQUIPMENT	NEW CHEMICALS, SOLVENTS	HEAT OR AIR CURED
	CONTROLLABLE CROSSLINKING	TOO REACTIVE OR UNREACTIVE	SPECIAL CONDITIONS OR EXTRA CHEMICALS	ADD CATALYST, REAGENT, HEAT
ROBUSTNESS				

ROBUSTNESS	RESILIENCE DURING MANUFACTURING	LIKELY PROBLEMS	POSSIBLE PROBLEMS	NO FORESEEABLE PROBLEMS
	CONTROLLABLE CROSSLINKING	TOO REACTIVE OR UNREACTIVE	SPECIAL CONDITIONS OR EXTRA CHEMICALS	ADD CATALYST, REAGENT, HEAT
DISRUPTION OF INFRASTRUCTURE	CROSSLINKING STEP	NEW EQUIPMENT	NEW CHEMICALS, SOLVENTS	HEAT OR AIR CURED
	FABRIC APPLICATION	NEW PROCESS	MODIFY EXISTING PROCESS	USES EXISTING PROCESS
	CHEMICAL SUPPLY	SPECIAL MANUFACTURE	LIMITED AVAILABILITY	WIDE AVAILABILITY
INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY

	RESILIENCE DURING CONSUMER USE	LIKELY PROBLEMS	POSSIBLE PROBLEMS	NO FORESEEABLE PROBLEMS
ROBUSTNESS	RESILIENCE DURING MANUFACTURING	LIKELY PROBLEMS	POSSIBLE PROBLEMS	NO FORESEEABLE PROBLEMS
	CONTROLLABLE CROSSLINKING	TOO REACTIVE OR UNREACTIVE	SPECIAL CONDITIONS OR EXTRA CHEMICALS	ADD CATALYST, REAGENT, HEAT
DISRUPTION OF INFRASTRUCTURE	CROSSLINKING STEP	NEW EQUIPMENT	NEW CHEMICALS, SOLVENTS	HEAT OR AIR CURED
	FABRIC APPLICATION	NEW PROCESS	MODIFY EXISTING PROCESS	USES EXISTING PROCESS
	CHEMICAL SUPPLY	SPECIAL MANUFACTURE	LIMITED AVAILABILITY	WIDE AVAILABILITY
INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY

SIDE EFFECTS	EFFECTS ON FABRIC	REQUIRES PROBLEM CHEMICALS	POSSIBLE NEED FOR PROBLEM CHEMICALS	NO FORESEEABLE PROBLEMS
	RESILIENCE DURING CONSUMER USE	LIKELY PROBLEMS	POSSIBLE PROBLEMS	NO FORESEEABLE PROBLEMS
ROBUSTNESS	RESILIENCE DURING MANUFACTURING	LIKELY PROBLEMS	POSSIBLE PROBLEMS	NO FORESEEABLE PROBLEMS
	CONTROLLABLE CROSSLINKING	TOO REACTIVE OR UNREACTIVE	SPECIAL CONDITIONS OR EXTRA CHEMICALS	ADD CATALYST, REAGENT, HEAT
DISRUPTION OF INFRASTRUCTURE	CROSSLINKING STEP	NEW EQUIPMENT NEW CHEMICALS, SOLVENTS		HEAT OR AIR CURED
	FABRIC APPLICATION	NEW PROCESS	MODIFY EXISTING PROCESS	USES EXISTING PROCESS
	CHEMICAL SUPPLY	SPECIAL MANUFACTURE	LIMITED AVAILABILITY	WIDE AVAILABILITY
INNOVATION	ADDITIONAL RESEARCH NEEDED	MAJOR HURDLES ANTICIPATED	MINOR HURDLES ANTICIPATED	OPTIMIZATION ONLY

	INNOVATION		DISRUPTION		ROBUSTNESS			SIDE EFFECTS
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION		ROBUSTNESS			SIDE EFFECTS
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION			ROBUSTNESS		
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION		ROBUSTNESS			SIDE EFFECTS
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION		ROBUSTNESS			SIDE EFFECTS
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION			ROBUSTNESS		SIDE EFFECTS
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION			SIDE EFFECTS		
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

	INNOVATION		DISRUPTION			SIDE EFFECTS		
	ADD'L RESEARCH NEEDED	CHEMICAL SUPPLY DISRUPTION	FABRIC APPLICATION DISRUPTION	CROSSLINK STEP DISRUPTION	CONTROLLED CROSSLINK	PROCESS DURABILITY	USE PHASE DURABILITY	PROCESS EFFECTS
DISULFIDE BONDS								
IMINE/AMINE BONDS								
POLY[CARBOXYLIC ACIDS]								
POLYMER WEAVE								
FIBER COATING								
FABRIC COATING								
IN SITU POLYMERIZATION								

		SCO	PE	DATA	COLLECTI	OUTCOME		
	INPUTS	USE	DEGREDATION	LISTS	PRIMARY LIT	ANALOGS	MODELED DATA	
GREENSCREEN				2	1 [comprehensive]	3	3	benchmark score
ADAPTED EVAL				1	2 [as needed]	3	3	relative rank

SINGLE CHEMICAL FVALUATION

NOI	GR	OUP	Ή	UM	AN	GI	ROUF) +	II* F	IUM	AN	E TO	OX FATE			PHYS
JAT	С	M	R	D	Е	AT Sgl	T rep	N sgl re	Sn	S SnF	R IrS Irl	E AA C	CA	Р	В	Rx F
ALI						0 0 0 0 0 0 0 0										

GROUP I HUMAN GROUP II + II* HUMAN E TOX FATE PHYS

C M R D E AT ST N SnS SnR IrS IrE AA CA P B Rx F

sgl rep sgl rep

SnS SnR IrS IrE AA CA P B Rx F

	GR	OUF	PΙΗ	UM	ΑN	GROUP II + II* HUMAN									EΤ	OX	FA	TE	PHYS	
	С	М	R	D	Е	АТ	S sgl	T rep	sgl	l rep	SnS	SnR	IrS	IrE	AA	CA	Р	В	Rx	F
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																	
IEMICAL HAZARD			0 0 0 0 0 0 0 0 0																	
HAZ ON			0 0 0 0 0 0 0 0 0																	
AL RIS			0 0 0 0 0 0 0 0 0 0																	
MIC		* * * * * * * * * * * * * * * * * * *	0 0 0 0 0 0 0 0																	
CHE		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0																	
_		•		•																

GROUP I HUMAN GROUP II + II* HUMAN E TOX FATE PHYS

C M R D E AT ST N SnS SnR IrS IrE AA CA P B Rx F

	GR	GROUP I HUMAN					GROUP II + II* HUMAN									FATE		PHYS		
	С	М	R	D	Е	АТ	S sgl	T rep	۱ sgl	l rep	SnS	SnR	IrS	IrE	AA	CA	Р	В	Rx	F
											9								0 0 0 0 0 0 0	
HAZARD 0N																				
HAN																				
HEMICAL FOR PRINCE FOR																			1 1 1 1 1 1 1	
MIC											9									
CHE		0 0 0 0 0 0 0 0 0 0 0 0									9								8 8 9 9 9 9	

BM 1

MEETS GREENSCREEN BENCHMARK 1 CRITERIA FOR AT LEAST ONE ENDPOINT; MUST BE ELIMINATED.

CONTEXT

BM 1	MEETS GREENSCREEN BENCHMARK 1 CRITERIA FOR AT LEAST ONE ENDPOINT; MUST BE ELIMINATED.
	PROBABLE HIGH HAZARD FOR GROUP 1 HUMAN AND ECOTOXICITY ENDPOINTS; VERY HIGH GROUP II/II* ENDPOINTS; AVOID.
	POTENTIAL HAZARD FOR GRP I HUMAN AND ECOTOX ENDPOINTS; KNOWN HIGH HAZARD FOR GRP II/II* HUMAN ENDPOINTS; HIGH PHYSICAL HAZARD.

BM 1	MEETS GREENSCREEN BENCHMARK 1 CRITERIA FOR AT LEAST ONE ENDPOINT; MUST BE ELIMINATED.
	PROBABLE HIGH HAZARD FOR GROUP 1 HUMAN AND ECOTOXICITY ENDPOINTS; VERY HIGH GROUP II/II* ENDPOINTS; AVOID.
	POTENTIAL HAZARD FOR GRP I HUMAN AND ECOTOX ENDPOINTS; KNOWN HIGH HAZARD FOR GRP II/II* HUMAN ENDPOINTS; HIGH PHYSICAL HAZARD.
	REASONABLE SUSPICION FOR CONCERN; MORE RESEARCH IS NECESSARY.

BM 1	MEETS GREENSCREEN BENCHMARK 1 CRITERIA FOR AT LEAST ONE ENDPOINT; MUST BE ELIMINATED.
	PROBABLE HIGH HAZARD FOR GROUP 1 HUMAN AND ECOTOXICITY ENDPOINTS; VERY HIGH GROUP II/II* ENDPOINTS; AVOID.
	POTENTIAL HAZARD FOR GRP I HUMAN AND ECOTOX ENDPOINTS; KNOWN HIGH HAZARD FOR GRP II/II* HUMAN ENDPOINTS; HIGH PHYSICAL HAZARD.
	REASONABLE SUSPICION FOR CONCERN; MORE RESEARCH IS NECESSARY.
	SUITABLE SUBSTITUTION BASED ON AVAILABLE DATA.

BM 1	MEETS GREENSCREEN BENCHMARK 1 CRITERIA FOR AT LEAST ONE ENDPOINT; MUST BE ELIMINATED.
	PROBABLE HIGH HAZARD FOR GROUP 1 HUMAN AND ECOTOXICITY ENDPOINTS; VERY HIGH GROUP II/II* ENDPOINTS; AVOID.
	POTENTIAL HAZARD FOR GRP I HUMAN AND ECOTOX ENDPOINTS; KNOWN HIGH HAZARD FOR GRP II/II* HUMAN ENDPOINTS; HIGH PHYSICAL HAZARD.
	REASONABLE SUSPICION FOR CONCERN; MORE RESEARCH IS NECESSARY.
	SUITABLE SUBSTITUTION BASED ON AVAILABLE DATA.
	NO DATA AVAILABLE.

CROSSLINKING STRATEGIES

SINGLE CHEMICAL EVALUATION

GROUP I HUMAN	GROUP II + II* HUMAN	E TOX	FATE	PHYS		
C M R D E	AT ST N SnS SnR IrS IrE	AA CA	Р В	Rx F		

	GR	GROUP II + II* HUMAN									E TOX		FATE		PHYS	;				
	С	M	R	D	Е	АТ	S sgl	T rep	sgl	√ rep	SnS	SnR	IrS	IrE	AA	CA	Р	В	Rx F	7
										0 0 0 0 0 0 0 0 0										
										0 0 0 0 0 0 0 0 0 0										
										0 0 0 0 0 0 0 0 0										
ĺ										0 0 0 0 0 0 0 0 0 0										
										0 0 0 0 0 0 0 0 0 0 0										1
l										8 9 9 9 9 9 9 9										1

SINGLE CHEMICAL **EVALUATION**

	GROUP I HUMAN																FATE		PHYS	
٠.	С	M	R	D	Е	АТ	S sgl	T rep	sgl	√ rep	SnS	SnR	IrS	IrE	АА	СА	Р	В	Rx	F
٠.									0 0 0 0 0 0 0 0											
									0 0 0 0 0 0 0 0 0 0 0 0											
									0 0 0 0 0 0 0 0 0 0											
									0 0 0 0 0 0 0 0 0											
									0 0 0 0 0 0 0 0 0 0 0											
									0 0 0 0 0 0 0 0 0											

SINGLE CHEMICAL **EVALUATION**

	GR	OUP	Ή	UM	AN	GROUP II + II* HUMAN									E TOX		FATE		PHYS	
٠.	С	M	R	D	Е	АТ	S sgl	T rep	sgl	√ rep	SnS	SnR	IrS	IrE	ΑА	СА	Р	В	Rx	F
٠.																				
																	9			

SINGLE CHEMICAL **EVALUATION GROUP I HUMAN GROUP II + II* HUMAN** ETOX | FATE | PHYS ST N SnS SnR IrS IrE AA CA Р Rx F В D Ε **GROUP I HUMAN** GROUP II + II* HUMAN FATE PHYS ST N sgl rep sgl rep SnS SnR IrS IrE AA CA Р В R D Ε Rx F **CATALYST CATALYST OXIDANT OXIDANT SOLVENT** SOLVENT

SINGLE CHEMICAL EVALUATION

SINGLE CHEMICAL EVALUATION

	GR	OUP	Ή	UM	AN		GROUP II + II* HUMAN									E TOX		FATE		PHYS	
٠.	С	M	R	D	Е	АТ	S sgl	T rep	sgl	l rep	SnS	SnR	IrS	IrE	AA	СА	Р	В	Rx	F	
٠.																	0 0 0 0 0 0 0 0				
																	0 0 0 0 0 0 0 0				
																	0 0 0 0 0 0 0				
																	8 8 8 8 8 8 8				
																	0 0 0 0 0 0 0				
																	0 0 0 0 0 0 0 0				

CROSSLINKING STRATEGIES

SINGLE CHEMICAL EVALUATION GROUP I HUMAN ETOX FATE PHYS GROUP II + II* HUMAN ST N SnS SnR IrS IrE AA CA P B Rx F D Ε GROUP I HUMAN GROUP II + II* HUMAN E TOX + FATE PHYS CATALYST **CATALYST OXIDANT OXIDANT SOLVENT SOLVENT**

HEALTH EVALUATION GREATEST HITS

	BAS	ELIN	IE		
	GRP I	+ *	E TOX	FATE	PHYS
SIZING					
WRINKLE-FREE XLINK					
DWR XLINK					
FORMALDEHYDE					

HEALTH EVALUATION GREATEST HITS

DISULFIDE BONDS

IMINE BONDS

	GRP I	+ *	E TOX	FATE	PHYS				
XLINK									
REDUCTANT									
CATALYST									

POLY ACIDS

POLY THIOLATION

POLY COATING

TEXTILE CROSSLINKING CAN BE CONSIDERED IN TWO PARTS: LINKAGE WITH CELLULOSE AND CROSSLINKING. FRAMEWORKS CAN BE APPLIED TO PROPOSED AND FUTURE SOLUTIONS.

CROSSLINKING STRATEGIES

TEXTILE CROSSLINKING CAN BE CONSIDERED IN TWO PARTS: LINKAGE WITH CELLULOSE AND CROSSLINKING.

TECHNICAL AND HEALTH EVALUATION FRAMEWORKS CAN BE APPLIED TO CURRENTLY PROPOSED AND FUTURE SOLUTIONS.

CONCLUSIONS FROM FRAMEWORKS ARE COMPLEX AND NUANCED, AND THERE IS OFTEN A TRADEOFF BETWEEN PERFORMANCE AND HEALTH CONSIDERATIONS

THANK YOU