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Abstract 

In this report we propose several strategies to improve the strength, flexibility, and durability of 
MycoWorks’ mycelium-based, leather-like material, while striving to uphold MycoWorks’ core mission 
to achieve a sustainable, biodegradable product. Our strategies can improve the technical performance 
of the current material while decreasing the health and environmental risks associated with the 
production of animal leather. We propose three methods to increase the strength, and potentially the 
flexibility, of the MycoWorks product by cross-linking the chitosan in the material. We also propose a 
strategy to apply a moisture barrier to the material to prevent leaching of the plasticizer. We evaluate 
the technical performance, feasibility, and the health and environmental hazards of our strategies using 
rigorous frameworks. Our frameworks cover a wide range of performance features, feasibility 
considerations, and health endpoints. Our genipin cross-linking and corn zein coating strategies can be 
implemented immediately and we recommend them with no reservations.  



Introduction 

Background 

Humans have been converting animal hides into leather for millennia to make use of the material's 
desirable qualities such as strength, flexibility, durability, and pleasant look and feel.  These qualities 
make animal leather highly versatile, rendering it useful in the production of clothing, furniture, 
automobiles, books, and other consumer products. To meet the demand for such products, over 
350,000,000 cow hides are used for leather production annually, in addition to the hides of sheep, goats, 
and other animals (Food and Agricultural Organization of the United Nations, 2016). For the purposes of 
our discussion when we mention conventional or animal leather we are referring to bovine leather.  

Although useful, animal leather presents many environmental, social, and health-related problems 

throughout its lifecycle. These issues begin as early as the procurement of the raw material. Cattle are 

often raised in tight quarters, a situation which presents animal welfare issues such as excessive 

antibiotic use, which may exacerbate the rise of antibiotic resistance (Mathew, Cissell, & Liamthong, 

2007). Cattle production is also highly carbon, water, and land intensive, giving cow hide production a 

rather large ecological footprint (Ridoutt, Page, Opie, Huang, & Bellotti, 2014). 

A series of chemical treatment processes collectively referred to as "tanning" convert animal hide to 

strong and supple leather. The most common tanning method is chromium tanning, although other 

processes such as aldehyde tanning and vegetable tanning are also used. Chromium uses large 

quantities of water and trivalent chromium salts to cross-link the collagen in the hide. Trivalent 

chromium is a skin sensitizer and allergen (Hedberg, Lidén, & Odnevall Wallinder, 2015). Further, it may 

change its valence state to become hexavalent chromium, a much more toxic chemical known for its 

potent carcinogenicity (Hedberg & Lidén, 2016). In addition to presenting significant occupational health 

hazards, chromium compounds may leach out of leather products long after production, placing 

consumers at risk (Hedberg & Lidén, 2016). 

Chromium tanning and other leather tanning processes tend to have relatively low uptake rates, leading 

to the formation of significant quantities of contaminated wastewater. Current methods to remove 

chromium from wastewater result in large quantities of solid waste (Aravindhan, Madhan, Rao, Nair, & 

Ramasami, 2004). Given that the waste associated with leather production is difficult to remediate 

before its disposal, waters near leather tanning facilities may be polluted with the waste products, 

significantly damaging normal ecosystem function (Dixit, Yadav, Dwivedi, & Das, 2015). 

Conscious consumers have long acknowledged the issues inherent in leather manufacturing. Demand 

for a safer, more environmentally-friendly alternative led to the development of synthetic ("vegan") 

leather. While vegan leather circumvents some of the problematic aspects of cattle farming, it fails to 

address concerns of carbon intensiveness and health problems. The material is synthesized from 

polyvinyl chloride (PVC), a petroleum-based polymer. PVC's petroleum-based roots raise concerns of 

sustainability and ecological footprint. Further, PVC is relatively brittle, necessitating the use of 

plasticizers. Dibutyl phthalate is usually the plasticizer of choice for vegan leather, but its use is 

problematic because it disrupts hormonal signals and exerts toxicity on the male reproductive system 

(Dixit, Yadav, Dwivedi, & Das, 2015). 



It is clear that leather products currently on the market perform unsatisfactorily with regards to 

environmental and health-related outcomes. While problematic, this is unlikely to diminish the demand 

for leather. Therefore there is a significant need for a more sustainable alternative. Innovative 

companies who take up this challenge have a significant business opportunity and a chance to move a 

multibillion-dollar industry in a more sustainable direction. 

MycoWorks 

MycoWorks is a startup in San Francisco, California that produces a mushroom-based leather alternative. 
The material has a similar look and feel to conventional leather while using a manufacturing process 
with significantly fewer environment and health hazards. The material is a composite of mushroom 
mycelium and cotton cellulose, which makes it biodegradable and eliminates the concerns associated 
with raising animals for leather production. The current manufacturing process uses minimal chemical 
additives, using only small amounts of water and polyethylene glycol (PEG). Further, the material has a 
relatively low carbon footprint, with the potential for a carbon negative manufacturing process with 
some refinement. 

MycoWorks' material already shares many of the properties of conventional leather and has been used 

in the manufacture of products such as purses, wallets, and phone cases. In order to match animal 

leather’s versatility there are several key targets for improvement. The primary targets are 

improvements in strength, flexibility, and durability.  

The garment industry has developed many strategies to achieve strength, flexibility, and durability. 

Unfortunately, many of them also involve the use of harmful chemicals. MycoWorks prioritizes 

environmental sustainability and worker and consumer health, which makes many of the traditional 

strategies for adding strength and flexibility incompatible with their core values. It is therefore necessary 

to identify chemicals and strategies which will enable MycoWorks to improve their material without 

compromising the comparative safety and environmental friendliness of their processes. Our strategies 

will enable MycoWorks to continue to grow and shift the leather industry in a more sustainable 

direction. 

Restriction criteria for strategy development 
 
To focus the direction of our research we employed several restriction criteria when selecting and 
developing the strategies proposed in this report. The most important constraint was that strategies be 
implementable during the post-harvesting portion of the current manufacturing process (Fig. 1).  
 

Figure 1. Current MycoWorks manufacturing steps to produce the minimum viable product (MVP) 
 
The first step of manufacturing the MycoWorks minimum viable product (MVP) is to seed Ganoderma 
lucidum spores onto sheets of felted cotton. The Ganoderma mycelium fibers grow among the cotton 



fibers and form a composite material which is then harvested. MycoWorks has optimized the growth 
and harvest process and requested that we focus on the downstream manufacturing steps.  
  
The current post-harvesting process has four steps: soaking, drying, plasticizing, and mechanical working. 
The purpose of the soaking and drying steps is to ensure the material has uniform moisture content 
throughout. Polyethylene glycol 400 (PEG 400), a hydrophilic low molecular weight polyol, is applied and 
maintains pliability by ensuring that the internal moisture does not evaporate. Lastly, the material is 
manipulated mechanically to produce the appearance of leather.  
  
This production process works well for the current manufacturing scale, in which sheets ranging from 
one by one foot, to sheets of several feet are manufactured. Therefore the second restriction criterion 
was that the strategies be practical for the current scale of operations, usable in the short term, and 
applicable at an increased manufacturing scale.  
  
The final restriction criterion was that the solutions comply with MycoWorks’ core mission to achieve a 
sustainable, biodegradable product. We prioritized strategies accordingly, employing naturally-sourced 
ingredients where possible. The goals of improving strength, durability, and flexibility, as well as the 
three restriction criteria we applied, helped inform the development of three cross-linking strategies 
and one moisture barrier strategy. With sufficient optimization MycoWorks can implement any of these 
strategies in the near future.  
 
Composition of the MycoWorks material 
 
The fungal species that MycoWorks uses is Ganoderma lucidum, which uses wood as its primary food 
source. The fruiting body is composed of mycelium. On the microscopic scale the thread-like mycelium 
grows in a branched and unruly manner, resulting in a soft and spongy substance. In turn, a major 
component of mycelium is chitin, one of the most common polysaccharides found in nature (Fig. 2). 
 

 
Figure 2. Major components of the Ganoderma lucidum mushroom. Microscope image (center) (Haneef 

et al., 2017). Note that we represent chitin and chitosan as a simple cartoon that captures their 
important structural characteristics: long-chain fibers with significant chemical functional groups along it. 
 
Chitin contains hydroxyl (-OH) and acetamide (-NHOCH3) groups (Fig. 3). Chitin can be deacetylated to 
form chitosan, a polysaccharide nearly identical to chitin. The difference between the two is that 
chitosan has primary amine groups (-NH2) instead of acetamide groups. When at least 50% of the 



acetamide groups are deacetylated to amine groups the name of the polysaccharide shifts from ‘chitin’ 
to ‘chitosan.’ Deacetylation methods are discussed in Appendix D. 
 

 
Figure 3. Chemical structures and cartoon representations of chitin and chitosan 

 
Primary strategy development: incorporate cross-linking  
 
Our primary approach for strategy development was to mimic cross-linking in animal leather. This is a 
phenomenon that occurs during the tanning step of leather and imparts the strength inherent to leather. 
Cross-linking involves long-chain fibers reacting with cross-linking molecules to form molecular bonds 
between the fibers. This produces a material that is stronger and sometimes more flexible than the 
original material (Fig. 4). In leather the long-chain fibers are composed of collagen, which is cross-linked 
by chromium(III) compounds or aldehydes. 
 
We propose to cross-link the chitosan fibers in the MycoWorks material using a variety of cross-linkers. 
These constitute the three cross-linking strategies presented in this report. We believe that the resulting 
material will be stronger and potentially more flexible than the current MVP. 

 

 
Figure 4. Illustration of cross-linking components for animal leather and for the MycoWorks material 



All of our proposed cross-linking strategies act on chitosan, not chitin. Chitosan has readily reactive 
primary amine functional groups that form amide bonds during cross-linking, whereas chitin has far less 
reactive acetamide functional groups. Amide bonds resist hydrolysis and confer structural rigidity at the 
molecular level. Cellulose – another polysaccharide present in the MycoWorks material – was not 
extensively considered for cross-linking since its hydroxyl functional groups present less favorable 
reactivity for cross-linking. 
 
Secondary strategy development approach: introduce a moisture barrier 
 
Our secondary approach was to introduce a moisture barrier as a coating to the MycoWorks material. 
PEG 400 is a successful plasticizer but it leaches out when the material is washed with water. 
Furthermore, the plasticizing performance is dependent on the ambient humidity. A moisture-resistant 
coating applied to the MycoWorks material would seal in the plasticizer, reducing its leaching out. 
 
Baselines for guiding strategy development & evaluation 
 
We established baselines to guide the development and evaluation of our proposed strategies. In terms 
of technical performance, we propose strategies that improve technical performance over the 
MycoWorks MVP. As mentioned above, the main targets for technical performance improvement are 
strength, flexibility, and durability. In terms of hazards, we propose strategies that present fewer 
hazards than the animal leather production process does. 
  



Proposed Strategies  
 

Cross-linking strategies 
 

Direct chemical replacement: natural cross-linkers 
 
The simplest approach to inducing cross-linking involves the application of a single compound, such as 
an aldehyde or tannin, in solution. Formaldehyde and glutaraldehyde have been used extensively in 
leather tanning and other applications where cross-linking is required, however both are hazardous to 
varying degrees. Formaldehyde is a known carcinogen and has been banned from the tanning industry 
(Covington, 1997; Swenberg et al., 2013). While glutaraldehyde is promoted as a “greener” 
formaldehyde alternative due to its biodegradability, it is acutely toxic to wildlife and humans (Leung, 
2001; Takigawa & Endo, 2006). Plant-based tannins have also been used in the leather industry 
(Covington, 1997). These tannins fall into two general tannin classes: pyrogallol and catechol. Although 
tannins that occur naturally in fruits and vegetables have been shown to potentially impact human 
health positively, the two classes of tannins used in leather processing appear to exhibit negative health 
effects (Chung, Wei, & Johnson, 1998). Pyrogallols exert toxicity in the liver, lungs, kidneys and 
gastrointestinal tract, leading to severe chronic and acute health endpoints (Upadhyay, Gupta, Prakash, 
& Singh, 2010). Catechols are highly reactive compounds that can damage cellular DNA and proteins, 
resulting in potential chronic and acute health issues as well (Schweigert, Zehnder, & Eggen, 2001).  
 
Striving to maintain methodological simplicity, we sought to directly replace these hazardous tanning 
compounds with naturally-derived cross-linking compounds that exhibit minimal cytotoxicity and can 
biodegrade. Researchers in the bioengineering field, who develop safe and effective methods to deliver 
drugs and graft tissue, have identified several natural cross-linkers. They include vanillin (Peng et al., 
2010), procyanidin in apple and grape seeds (K.-Y. Chen et al., 2009; Pinheiro, Cooley, Liao, Prabhu, & 
Elder, 2016; Slusarewicz, Zhu, & Hedman, 2010; Zhai et al., 2006), alginated dialdehyde from brown 
algae (Xu, Li, Yu, Gu, & Zhang, 2012), and genipin (Jin, Song, & Hourston, 2004; Pinheiro et al., 2016; 
Slusarewicz et al., 2010; Yoo, Kim, Kim, & Choi, 2011). Within our context, genipin is the most promising 
among these natural cross-linkers because it is relatively efficient (Mi, Sung, & Shyu, 2000; Slusarewicz 
et al., 2010) and is the primary cross-linking agent that has been experimented with chitosan (Butler, Ng, 
& Pudney, 2003; H. Chen, Ouyang, Lawuyi, Martoni, & Prakash, 2005; Chiono et al., 2008; Gorczyca et al., 
2014; Grolik et al., 2012; Jin et al., 2004; Mi et al., 2000; Muzzarelli, 2009; Sampaio, Fook, Fidéles, 
Cavalcanti, & Fook, 2014; Zhang et al., 2010; Zheng, YunYu, & Al), 2009). 
 
Genipin is a small-molecule metabolite of geniposide (Fig. 5). Found in the gardenia fruit, it is used in 
Eastern medicine for its anti-inflammatory, diuretic, choleretic, and hemostatic properties (Butler et al., 
2003). It is also used in East Asia for food coloring (Mi et al., 2000). In the gardenia fruit geniposide is a 
defense chemical against herbivores and pathogens. Geniposide is categorized as an iridoid glycoside, a 
class of compounds that are secondary metabolites in plants. Iridoid glycosides provide defense, 
generally have a bitter taste, and have antifeedant and growth inhibitory activities against insects 
(Konno, Sabelis, Takabayashi, Sassa, & Oikawa, 2010). A side reaction occurs with genipin use that turns 
materials blue and so alternative compounds within this class might be explored. These potential 
alternatives include kutkoside and picroside-I , which may have metabolites with functional groups that 
may be able to also induce cross-linking in chitosan, without turning the material blue. 



            
 

 
 

Functional/reactive groups + chemical reactions 
 
The functional groups of genipin involved in cross-linking are the 1) an ester and 2) the third carbon (C3) 
in the six-membered dihydropyran ring (Fig. 5). Both of the functional groups react with the primary 
amine group in chitosan and become connectors between two chitosan fibers (Fig. 6) (Butler et al., 2003; 
Mi et al., 2000). Although these reactions are not fully understood, it appears that they can occur in 
acidic, neutral, or alkaline conditions (Sampaio et al., 2014). One half of the cross-linking, Reaction A, 
occurs via an initial nucleophilic attack by the chitosan primary amine on C3, opening up the 
dihydropyran ring (Fig. 7). The formation of a secondary amine completes the reaction, leading to a 
heterocyclic compound of genipin bound to chitosan (Butler et al., 2003; Mi et al., 2000). The open 
dihydropyran ring also generates a radical oxygen (Fig. 7, blue square), which induces polymerization of 
genipin. This polymerization causes the chitosan-containing material to turn blue (Butler et al., 2003). 
The other half of the cross-linking, Reaction B, occurs via a nucleophilic substitution reaction where the 
ester group on genipin is substituted with a secondary amide bond. The primary amine group on 
chitosan attacks the ester and converts into a secondary amide (Fig. 8) (Butler et al., 2003; Mi et al., 
2000). The order of Reaction A and B differs by publication (Butler et al., 2003; Mi et al., 2000).  
 

 

 

Source: https://www.thesynergycompany.com/ Source: Sigma-Aldrich 

Figure 5. Source and chemical structure of genipin 

Figure 6. General reaction scheme between chitosan fibers and mono-/polymers of genipin 



 

 

 

Proposed processing steps 
 

 

 
Cross-linking with genipin is a simple procedure that requires minimal energy input. Commercially 
available genipin powder would be dissolved in a solvent first, and then mixed into a solution with 
partially deacetylated MycoWorks material (Fig. 9). The mixture or bath would then be incubated for 40 
minutes to several hours at room temperature with agitation. The length of the incubation period 
differed across experiments and would need to be optimized for the MycoWorks material. The resulting 
material requires washing with water or another solvent to neutralize the material to pH 7 and remove 
unreacted genipin. This general procedure is based on experiments conducted with chitosan powder 
dissolved in acetic acid, so the solvent for genipin powder is also acetic acid (Butler et al., 2003; Mi et al., 
2000). The solvent selected across publications appears to be based on the polymer being cross-linked 
by the genipin. For example, demineralized water was used when cross-linking gelatin and chitosan 
(Chiono et al., 2008; Jin et al., 2004; Liu & Kim, 2012), PBS was used in composite films with collagen 
(Pinheiro et al., 2016; Slusarewicz et al., 2010; Yoo et al., 2011), and ethanol was used for composite 
films with silk fibroin (Zhang et al., 2010) and collagen/gelatin (Gorczyca et al., 2014). MycoWorks may 
be able to achieve cross-linking in distilled or demineralized water, so this approach should be tested 
first before a solvent is introduced. The solvent might also be based on the procedure used to 
deacetylate the chitin into chitosan. 
 
Targets for optimization required for the use of genipin in the MycoWorks process includes: 
concentration of genipin, pH for the reaction, incubation time, and solvent needs. The genipin 

Figure 7. Reaction A – nucleophilic attack of C3 by the chitosan primary amine (red box) (Butler et al., 2003) 

Figure 8. Reaction B – nucleophilic substition by the chitosan primary amine (red box) for a secondary amide 
(Butler et al., 2003) 

Figure 9. Proposed processing steps to achieve cross-linking via genipin 



concentration has varied across studies: 1-100 mM (Butler et al., 2003), 0.05 – 1% wt (Jin et al., 2004; Liu 
& Kim, 2012; Yoo et al., 2011),  0.1-1 % w/v (Mi et al., 2005; Mu, Guo, Li, Lin, & Li, 2012), 0.5-2.5% w/w 
to the weight of the polymer (Chiono et al., 2008; Gorczyca et al., 2014). Varying the pH at which the 
reaction is done affects the degree of cross-linking and the chain length of the genipin bridges, so it 
benefits MycoWorks to explore several solvent and pH options (Mi, Shyu, & Peng, 2005). The incubation 
times suggested in literature are based on the development of solid films; therefore the time needed to 
achieve optimal cross-linking within the MycoWorks material will likely vary.  
 
Overall strategy benefits + challenges  
 
The process to achieve cross-linking with genipin is relatively straightforward, with a few factors to 
optimize experimentally, and can be integrated easily into the current MycoWorks process and scale. All 
of the components of this strategy are commercially available, including any solvents that MycoWorks 
may want to test to vary the pH (e.g. acetic acid, phosphate buffer, Tris buffer, and sodium hydroxide). 
Genipin itself is biodegradable, and if no solvent besides distilled/demineralized water is necessary to 
achieve optimal cross-linking and performance, then the strategy is sustainable and completely 
biodegradable as well. Since cross-linking occurs with genipin polymers of various lengths, flexibility may 
also be achieved as there is varying space between bonded polymers (Butler et al., 2003; Mu et al., 
2012). Thus, the performance goals of increasing strength and flexibility of the MycoWorks MVP can be 
achieved through this strategy. Furthermore, the varying extent of cross-linking will lead to additional 
desirable features such as enhanced swelling capability, resistance against enzymatic hydrolysis, and 
thermal stability of genipin-fixed materials (Mu et al., 2012).  
 
The biggest downside of this strategy is that it will turn the material blue as previously described (Fig. 
10). The degree of color change is a function of the genipin concentration, incubation time, pH, 
temperature, and exposure to air (Butler et al., 2003; Gorczyca et al., 2014; Paik, Lee, Cho, & Hahn, 
2001). Increased exposure to air enhances the intensity of  the bluenecolor (Butler et al., 2003). 
Additionally, the blue pigment is more stable in more alkaline conditions (Paik et al., 2001). Therefore, 
this blue side effect could potentially be minimized by performing the experiment in a contained 
environment with minimal airflow and in an acidic solution. 
 

 

 

Enzymatically-driven cross-linking 
 
Following natural cross-linkers, enzymes represent another simple approach for inducing cross-linking. 
We turned to bio-inspired design for leads in designing the enzymatically-driven cross-linking strategy. 

Figure 10. Varying degree of blueness with varying experimental conditions (Gorcyzca et al., 2014) 



Many natural processes are catalyzed by enzymes. Among these are: the hardening of insect shells, 
melanization (darkening) of soil, and browning of fruit. The enzyme tyrosinase is responsible for the 
three reactions listed, and more (Fig. 11).  
 

  
 

Figure 11. Natural processes caused by tyrosinase driven reactions 
  
Tyrosinase is a polyphenol oxidase, meaning that its binding site accepts and a variety of polyphenols 
upon which it catalyzes an oxidation-reduction reaction. The binding site accommodates two aromatic 
compounds and an oxygen (Mayer et al., 2006). The polyphenol oxidase class of enzymes also includes 
laccase and peroxidase, which may present other potential enzymatically-driven cross-linking solutions. 
Commercially available tyrosinase is typically produced through fermentation by genetically engineered 
fungi. 
  
Functional/reactive groups + chemical reactions 
 
Unlike the natural cross-linker strategy, tyrosinase does not actually serve as the cross-linking compound. 
Instead tyrosinase converts a phenolic substrate into a more reactive o-quinone compound, which 
serves as the cross-linker (Fig. 12). A favorable aspect of the tyrosinase-driven reaction is that tyrosinase 
accepts many different phenolic substrates (Mayer et al., 2006). After the o-quinones are produced, 
they serve directly as cross-linking monomers and polymers between chitosan fibers (Fig. 13). 
Enzymatically-generated quinones preferentially react with the primary amine group of chitosan (Kumar 
et al., 1999). While the tyrosinase cross-linking reaction is not fully understood, it appears that these 
reactions can occur in acidic, neutral or alkaline conditions (Mayer et al., 2006).  



  
Figure 12. Chemical reaction to convert phenolic substrate into reactive o-quinone cross-linker via 

tyrosinase 
  

 
Figure 13. General reaction scheme between chitosan fibers and mono-/polymers of o-quinone 

    
Proposed processing steps 
 
Tyrosinase can be used to drive a cross-linking reaction in chitosan fibers through a straightforward and 
low energy process (Fig 14).  
  

 
Figure 14. Proposed processing steps for enzymatically-driven cross-linking via tyrosinase enzyme 

(Kumar et al., 1999) 
  

In literature this procedure was done in dilute hydrochloric acid, however given that the tyrosinase is 
active at different pH levels, MycoWorks is likely to be able to find alternative solvents for this strategy 
(Kumar et al., 1999). First, commercially available p-cresol would be mixed into a solution with the 
MycoWorks material. Varying levels of p-cresol will need to be tested to find the optimal amount 
needed for the level of crosslinking desired. Depending on the concentration of p-cresol added, a 



corresponding amount of commercially available tyrosinase is then added. Afterwards, the solution 
containing the chitosan-phenolic substrate and tyrosinase is left to incubate overnight at room 
temperature. To remove low molecular weight solutes, such as unreacted phenolic substrate, a solvent 
can be added to neutralize the pH of the solution. This precipitates out unreacted solutes. The solvent 
washing step can be repeated as needed. Finally, the material is washed with deionized water.  
  
Overall strategy benefits + challenges 
 
The tyrosinase-driven cross-linking strategy is appealing due to the low complexity of the process. After 
mixing in the phenolic substrate and tyrosinase, only room temperature incubation and washing steps 
are required. The fundamental ability of tyrosinase to induce cross-linking in chitosan has been proven 
by several researchers(Kumar et al., 1999) (Y. Zhang et al., 2010). 
  
Compared to just purchasing quinone compounds and using those directly as cross-linkers, o-quinone 
formation via a tyrosinase driven reaction confers favorable properties. Quinone compounds are highly 
electrophilic, meaning they tend to be very reactive and as a category pose significant health, 
environmental, and occupational hazards. In addition tyrosinase-generated o-quinones appear to 
preferentially react with the primary amine group of chitosan (Kumar et al., 1999). Therefore, the 
strategy presented here should produce o-quinone cross-linkers that specifically target the functional 
groups which we are interested in cross-linking. 
  
The key challenge associated with the tyrosinase enzymatically-driven cross-linking is the lack of 
information on how it affects the mechanical properties of the material. Kumar et al. (1999) confirm that 
the strategy is viable for inducing cross-linking in chitosan; however, it is not clear whether this cross-
linking will confer the level of strength and flexibility desired for the final MycoWorks material. Given 
that tyrosinase also drives many “browning” reactions in natural processes (such as food browning), 
further research is also needed into how this strategy may affect the color of the MycoWorks material. 
 

Nanocomposite-based material 
 
In the naturally-evolved world, arthropods layer chitin with nano-sized additives to form 
nanocomposites which demonstrate a wide range of physical properties. These additives include 
inorganic chemicals from the arthropod’s environment and proteins produced by the arthropod (Appel, 
Heepe, Lin, & Gorb, 2015; Raabe, Sachs, & Romano, 2005). The presence of the additives at the 
nanoscale greatly improves the performance of the arthropod’s chitinous structures. Stronger 
exoskeletons, better wings, and more resilient joints are all macroscale results of the nanoscale 
interactions between the additives and chitin (Appel et al., 2015; Raabe et al., 2005). MycoWorks 
already employs the concept of using compositing to improve strength in the manufacture of its MVP. 
The current composite is composed of chitin and cotton fibers. We believe that additional compositing, 
combined with cross-linking to fix it in place, will improve the strength of the MycoWorks MVP.  
  
Initial forays into arthropod cuticle biomimicry led to potentially viable cross-linking strategies. Miessner, 
Peter, and Vincent (2001), taking inspiration from naturally occurring tanning in mollusks, used catechol 
and a peptide coupling reagent to induce crosslinking in dihydroxyphenylalanine (DOPA), a peptide 
impregnated into the material they were working with. Oh and Hwang (2013) investigated the 
biochemical process of sclerotization in squid beaks, which is similar to tanning, to improve the 
mechanical properties of chitosan. They used DOPA as the cross-linker and sodium peroxidate to oxidize 



the DOPA in order to facilitate cross-linking between it and primary amine functional groups on chitosan 
(Oh & Hwang, 2013) Both of these strategies improved mechanical properties and looked promising, 
and both posed significant occupational hazards. The catechol hazards are enumerated above; DOPA is a 
precursor to the neurotransmitter dopamine, which makes occupational exposure a particular concern. 
  
We sought a different method of cross-linking chitosan using the primary amine group and found work 
which had been done in chitosan hydrogels using chitin nanowhiskers and the blocked isocyanate cross-
linker hexamethylene-1,6-di-(aminocarboxysulfonate) (HDS) (Araki, Yamanaka, & Ohkawa, 2012). 
Chitosan is dissolved in 5 wt% acetic acid and chitin nanowhiskers are added at various concentrations. 
Synthesized HDS is mixed in and the gel is allowed to solidify. The nanowhiskers fill the gaps between 
the chitosan fibers, forming a nanocomposite which is strengthened further through cross-linking. The 
resulting chitosan-chitin nanocomposite has improved elastic modulus and tensile strength. The HDS 
molecule is a 6-carbon chain with a blocked isocyanate functional group at each end of the molecule (Fig. 
15). It catalyzes bond formation between the primary amine functional groups on chitin and chitosan, 
and the isocyanate groups on HDS (Fig. 16). 

  

 
Figure 15. Structure of HDS (Araki et al., 2012) 

  

 
 

Figure 16. HDS-mediated cross-linking between chitin nanowhiskers and chitosan fibers (Araki et al., 
2012) 

  



There are some problems with HDS. First, it is not commercially available and must be synthesized in the 
lab from hexamethylene diisocyanate and sodium metabisulfite. Second, both of these chemicals are 
persistent in the environment and pose acute as well as chronic health hazards in the occupational 
setting. Primary amines, however, are predisposed to other types of chemical reactions. One of the 
most prevalent is the amide bond, which occurs between a primary amine and a carboxylic acid.  
  
Functional/reactive groups + chemical reactions 
 
There are many ways to synthesize amide bonds (Pattabiraman & Bode, 2011). Many of them, such as 
amidation by aldehydes, metal catalysts, and bromo-nitro compounds, pose health and environmental 
toxicity risks. Boronic acids are fairly new amidation catalysts which are efficient at forming amide bonds 
between primary amines and carboxylic acids in a direct and waste-free reaction (Pattabiraman & Bode, 
2011). Additionally they pose fewer health and environmental concerns than other amidation catalysts 
(Al-Zoubi, Marion, & Hall, 2008).  
  
The boronic acid catalyst selected is 2-iodophenylboronic acid (IPBA) (Fig. 17) and the carboxylic acid is 
suberic acid (Fig. 18). IPBA has has the best performance in forming amide bonds at room temperature 
out of 45 ortho-functionalized arylboronic acids tested (Al-Zoubi et al., 2008). The majority of boronic 
acid catalysts require temperatures as high as 110°C, however we sought to have a process which uses 
as little thermal energy as possible. The boronic acid catalyzes amidation by generating an active ester 
(Pattabiraman & Bode, 2011).  

 
Figure 17. Chemical structure of 2-iodophenilboronic acid (Al-Zoubi et al., 2008) 

 
Suberic acid, the cross-linker chosen for this strategy, is a linear saturated dicarboxylic acid. It has a 6-
carbon chain with a carboxyl functional group (-COOH) on each end. It was chosen because it has the 
same carbon chain length as HDS. The carbon chain length of the cross-linker molecule is important 
because cross-linking using short chain carboxylic acids has been shown to cause brittleness in fabrics 
(Harifi & Montazer, 2012). The longer chain length allows for room to move, on a molecular level, which 
we believe will help maintain, or potentially increase flexibility of the MycoWorks material.  
 

 
Figure 18. Chemical structure of suberic acid (Source: Sigma Aldrich) 

 
Chitin nanowhiskers fill the spaces between the fibers in the MVP. The nanowhiskers are approximately 
10nm in diameter and 300-500nm in length, allowing them to penetrate into the material (Fig.19). While 
chitin has predominantly acetamide groups (-NHCOCH3), it also has naturally occurring primary amine 
functional groups, so the nanowhiskers do not need to be deacetylated (Fig. 20). Sufficient primary 



amines will be available to be cross-linked. Too many primary amines on the chitin nanowhiskers could 
result in excessive cross-linking, which can lead to stiffness.  
 

              
 
         Figure 19. SEM image of chitin                                         Figure 20. Chemical structure of chitin 
        nanowhiskers (Araki et al., 2012)                                                           (Araki et al., 2012) 
 
A simple thermal dehydration reaction between primary amines and carboxyl groups forms unreactive 
carboxylate-ammonium salts (Al-Zoubi et al., 2008; Arnold et al., 2006). The arylboronic acid overcomes 
the activation energy necessary to mediate amide bond formation (Al-Zoubi et al., 2008). In this strategy 
the amide bonds are formed between the chitin nanowhiskers and suberic acid, and the suberic acid 
and chitosan fibers (Fig. 21). The mechanism by which IPBA catalyzes direct amidation is not fully 
understood (Al-Zoubi et al., 2008; Arnold et al., 2006). The mechanism’s general activity and the 
chemical species involved are mostly known, but specifics about why some arylboronic acids are better 
catalysts than others have not yet been determined.  

 
Figure 21. General reaction scheme between chitosan fibers, suberic acid, and chitin nanowhiskers 

  
When IPBA is in solution it fluctuates between two species: a diboronate (labeled 9 in Fig. 22) and a 
boroxine (labeled 10 in Fig. 22). These two species provide electrophilic activation of the suberic acid 
carboxyl group (Al-Zoubi et al., 2008). The carboxyl groups transform into carboxylates through boron 
conjugation and hydrogen bonding, and the boronic acid is acylated (Al-Zoubi et al., 2008). A hydrogen 
bond is created between the two, forming the intermediates monoacylboronate and diacylboronate 
(labeled I and II respectively in Fig. 23) (Al-Zoubi et al., 2008; Arnold et al., 2006). While the question of 
which of these intermediates is the active acylating species remains, literature indicates that it is 
believed to be the diacylboronate (Arnold et al., 2006).  The active intermediate oxidizes the primary 
amine and acylates it, forming an acylated amide. The amide and carboxylate undergo a dehydration 



reaction to form a covalent amide bond, and detach from the IPBA intermediates (Al-Zoubi et al., 2008; 
Arnold et al., 2006).  

 
 

Figure 22. Arylboronic acid (Ar-B(OH)2) species in solution (Arnold et al., 2006) 
  

 
Figure 23. Proposed mechanism for direct amidation with IPBA (Al-Zoubi et al., 2008) 

  
Use of IPBA is relatively simple compared to other catalytic amidations. The reaction does not require 
energy input through heating, nor does it require cooling to ensure undesirable side reactions do not 
occur (Al-Zoubi et al., 2008). No excess substrates are required for the reaction, and the carboxylic acid 
and amine are in equivalent molar concentrations (Al-Zoubi et al., 2008). Additionally, no by-products 
are formed and in the lab reactions the IPBA was recovered after it catalyzed the amide bonds (Al-Zoubi 
et al., 2008).  
 
 
 
 
 
  



Proposed Processing Steps  
 

 
 

Figure 24. Proposed processing steps to achieve a cross-linked nanocomposite material 
 
The composite-based strategy has four major processing steps. First the chitin nanowhiskers are 
synthesized from commercially available chitin powder. Chitin powder is extracted from shrimp shells 
which would otherwise be waste and is comprised of aggregates of nanofibers (Ifuku, 2014). To 
synthesize the nanowhiskers the powder is dispersed in dilute acetic acid and ground using a friction 
grinder (Ifuku, 2014). The acidic water ionizes chitin’s acetamide functional group, forming electrostatic 
repulsive forces which aid the separation of the nanofiber aggregates into homogenous nanowhiskers 
with a diameter of about 10 to 20 nm, and a length of 200 to 500 nm (Araki et al., 2012; Ifuku, 2014). 
The nanowhiskers can be introduced into the MycoWorks material during the soaking portion of the 
post-harvest manufacturing process. 
  
The second step of this strategy is to partially deacetylate the MycoWorks material. In order for chitin to 
form amide bonds more easily, sufficient acetamide functional groups must be converted into primary 
amines. If the degree of deacetylation is less than 50%, chitin retains its properties and does not become 
chitosan. Creatures which produce chitin use the enzyme chitin deacetylase to transform chitin into 
chitosan; this enzyme is not available commercially. Application of sodium hydroxide is the most 
common chemical method to deacetylate chitin. Treating chitin with 2M Sodium Hydroxide for 3 hours 
at 24°C (75°F) will result in an approximately 15% increase in deacetylated chitin molecules, which will 
yield accessible primary amines for cross-linking (Pires, Vilela, & Airoldi, 2014).  
  
In the final step, the chitin nanowhiskers are cross-linked to the partially deacetylated MycoWorks 
material using suberic acid as the dicarboxylic acid cross-linker, and 2-iodophenylboronic acid (IPBA) as 
the catalyst of amide bonds (Al-Zoubi et al., 2008). For a carboxylic acid with one functional group, the 
ratio of carboxyl moles to amine moles is 1:1 (Al-Zoubi et al., 2008). In a reaction using a dicarboxyl the 
ratio of suberic acid moles to amine moles is 1:2. Because the IPBA is not consumed in the reaction it 
can be added at a level 10 fold lower than the molar concentration of amine (Al-Zoubi et al., 2008). An 
amine concentration of 0.5 mM only requires the addition of 0.05 mM IPBA (Al-Zoubi et al., 2008). 
Impregnating chitin nanofibers into the partially deacetylated MycoWorks material and cross-linking the 
two using amide bonds has been shown in literature to provide extra structure and strength (Araki et al., 
2012). This strategy also potentially improves the flexibility of the material due to the 6 carbon chain 
length of suberic acid, which allows for more movement among the fibers of the material. 
  
Overall strategy benefits + challenges  
 
The strategy of cross-linking chitin nanowhiskers to the chitosan fibers of the MycoWorks MVP to form a 
nanocomposite has several benefits and challenges. The filler used is a renewable resource and is 
biodegradable, which meets MycoWork’s goals of sustainability and biodegradability. The chemical 
process does not have side reactions or by-products which could cause potential hazards. When the 
amide reaction is complete there are no unreacted chemicals left in the material. Filling some of the 



gaps between the chitosan fibers with the chitin nanofibers is a method proven to increase both tensile 
strength and elastic modulus chitosan-chitin hydrogels.  
  
The experiments this strategy is based on were done in hydrogels and the strategy may not be fully 
replicable in the MycoWorks MVP. Additionally, substituting the hexamethylene-1,6-di-
(aminocarboxysulfonate) catalyst and cross-linker used in the Araki (2012) study with 2-
iodophenylboronic acid and suberic acid adds another unknown challenge, no direct example of this 
strategy has been located in literature. Lastly, the solvents used may present the need for additional 
experimentation. The most common solvent used in the amide reaction between IPBA and carboxylic 
acids is dichloromethane, which has an unacceptable occupational hazard profile due to carcinogenicity. 
Appendix C presents alternative solvents with better hazard profiles which may be substituted for 
dichloromethane.  
  
While this strategy presents potentially lengthy challenges to optimization, it offers a promising 

technology for building on the existing MycoWorks composite material. If the genipin-only strategy 

results in material which is too stiff, an approach combining chitin nanowhiskers in conjunction with 

genipin may prove viable.  Because genipin acts on primary amine groups, it is possible to increase the 

molecular distance between the chitosan fibers by cross-linking nanowhiskers with genipin and chitosan 

to increase the distance between the fibers.  

 

Moisture barrier strategy: corn zein coating 
 
There are a number of water-insoluble proteins which may be extracted from agricultural byproducts 
that could be used as bio-based moisture barriers for the MycoWorks material (Gennadios, 2002). 
Examples of such proteins include corn zein, wheat gluten, and fish myofibrillar protein. Corn zein is a 
protein that is a byproduct of corn gluten meal, which itself is a byproduct of corn processing. Corn zein 
is typically incorporated into animal feed, but is not used in human food because of its low nutritional 
value (Shukla & Cheryan, 2001). Wheat gluten is the protein left over after starch is washed away from 
wheat flour dough. Fish myofibrillar protein can be extracted from byproducts of surimi production. All 
of these proteins can form films that are moisture-resistant to different degrees. All merit further 
consideration as sources of moisture barriers for the MycoWorks material, but in this report we focus on 
corn zein because we found it to be the most promising of these proteins. 
 
Corn zein is extracted from corn and produced as a powder. It is sold commercially and can easily be 
made to form a film (Fig. 25) (Cuq, Gontard, & Guilbert, 1998). These films are well characterized and 
known to be moisture-resistant, grease-resistant, and antimicrobial (Gennadios, 2002). Corn zein is used 
commercially to form coatings directly on foods like nuts and candies to maintain freshness, flavor, and 
color; for coatings on biodegradable and edible food packaging; and as casings on pharmaceutical 
tablets to protect the components and to achieve controlled drug delivery.  
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Source: Wageningen University & Research (https://www.wur.nl/en/show/Encapsulation-properties-of-corn-

protein-zein.htm) 

Figure 25. Pure corn zein in powder form, and corn zein film 
 
Proposed processing steps 
 

 
 

Figure 26. Proposed incorporation of corn zein coating into MycoWorks manufacturing process. 
 
Several steps are needed to incorporate a corn zein coating into the current MycoWorks manufacturing 
process (Fig. 26). Corn zein powder would be dissolved in a solution of warm ethanol and PEG. After 
cooling, the solution could be applied to the MycoWorks material through dipping, brushing on, or 
spraying on. After the solvent evaporates a drying oil (e.g. as tung oil) could be added for increased 
moisture resistance if it is shown not to increase brittleness. 
 
Moisture-resistance and flexibility of corn zein films 
 
The majority of studies that we found on the properties and performance of corn zein focused on stand-
alone corn zein films rather than corn zein coatings. We therefore examined studies of stand-alone corn 
zein films in order to assess the potential of a corn zein coating as a moisture barrier for the MycoWorks 
material. It is important to keep in mind that the properties and performance of a coating are not 
identical to those of a stand-alone film. 
 
Corn zein films are generally brittle, requiring the addition of plasticizers. Common plasticizers include 
polyols such as glycerol and PEG, mono/di/oligosaccharides, lipids, and lipid derivatives. Various 
plasticizers can increase the film’s percent elongation by 10- to 100-fold (Table 1). We recommend that 
MycoWorks experiment with different plasticizers in different ratios in order to achieve maximum 
flexibility of the corn zein film to reduce the risk of the coating flaking off due to normal wear and tear. 
 
 
 
 
 

https://www.wur.nl/en/show/Encapsulation-properties-of-corn-protein-zein.htm
https://www.wur.nl/en/show/Encapsulation-properties-of-corn-protein-zein.htm


 
Table 1. Experimentally determined features of corn zein films, adapted from Table 2.1 in Gennadios, 
2002. Gly = glycerol, PPG = polypropylene glycol, PEG = polyethylene glycol. TS = tensile strength, E = 
percent elongation, YM = Young’s Modulus, WVP = water vapor permeability. RH = relative humidity. 
Cast films refer to those produced by dissolving corn zein in solution (usually an alcohol) with non-fatty 
acid plasticizers, while drawn films result when corn zein is plasticized in solution with long chain fatty 
acids. 
 
Corn zein films have been well-studied for their moisture barrier properties. The most common measure 
of moisture evaporation prevention is water vapor permeability (WVP). This metric describes the 
passage of water vapor through a film. A lower WVP signifies a smaller amount of water vapor 
permeating through a film over a given area, time period, and pressure. A film of corn zein without 
plasticizer has a WVP 100 times that of a LDPE film - a good moisture barrier - and a film with oleic acid 
as a plasticizer has a WVP 10 times that of a LDPE film (Table 1). When tung oil is added, the film’s WVP 
reaches the same order of magnitude as that of a LDPE film. Tung oil comes from the seed of the tung 
tree and is an example of a drying oil that thickens upon drying. We note that this table does not contain 
measurements for films with only PEG as a plasticizer; therefore MycoWorks will need to test the 
moisture resistance of corn zein coating using PEG as the plasticizer. Plasticizers have been shown to 
negatively impact the WVP of corn zein film. Therefore if PEG is found to negatively impact the moisture 
resistance of the corn zein coating, further testing using different plasticizers in various ratios will need 
to be done to maximize the water resistance of the coating. 
 
Overall strategy benefits + challenges  
 
Based on the available literature about corn zein films we are confident that the moisture barrier and 
flexibility properties of a corn zein coating are promising enough to warrant testing on the MycoWorks 
material. Corn zein films also have the added benefit of grease resistance, which may confer positive 
physical properties not yet considered.  Additionally, corn zein comes from byproducts of corn 
processing, keeping with MycoWorks’s goal to use bio-based components that are agricultural 
byproducts. All materials involved in this strategy are commercially available, and a corn zein coating 
would be simple to integrate into the current manufacturing process. As reflected by its application in 
food and drug products, corn zein generally presents minimal health and environmental hazards apart 
from potential allergenicity. 
 
To the best of our knowledge corn zein coatings have not been tested on textiles. Further research is 
needed to determine the coating’s durability through washes, and to optimize the corn zein : plasticizer 
ratio. Another potential drawback of is that corn zein films might give the MVP a weak yellow color; 
however, various strategies for de-colorizing corn zein have been presented and  MycoWorks could 
develop a de-colorization strategy if needed (Sessa, Eller, Palmquist, & Lawton, 2003).  



Technical Performance Evaluation 
Framework 
 
To evaluate the technical performance across strategies, we developed the framework in Table 2. 

  

 
Table 2. Criteria used to evaluate technical performance of prospective strategies 
 
We split technical metrics across two major categories: performance and feasibility. The performance 
category evaluates each strategy’s impact on the performance of the MycoWorks material. Within this 
category, the proposed strategies are evaluated relative to the current MycoWorks material’s 
performance as a baseline. We describe each performance metric in detail below: 

• Strength: Ultimate tensile strength (UTS) (MPa) is used to evaluate the overall strength of the 
material. UTS is defined as the max elongation/tensile stress a material can withstand before 
rupturing. 

• Water resistance: Ability of the material to repel water. 

• Flexibility: Bending endurance, which is the number of bending cycles a material can withstand 
before failing, represents the ideal flexibility metric for the MycoWorks material. However, 
literature related to our proposed strategies typically does not report bending endurance as a 
mechanical property. Instead, elastic modulus (also known as Young’s modulus), is used as a 
proxy for bending endurance and overall material flexibility. 

• Longevity through washes:  Ability for the properties conferred by the proposed strategy to last 
through multiple washing cycles. 

• Handfeel: Subjective metric to evaluate how the proposed strategy may affect the feeling of the 
MycoWorks material on skin. 

• Discoloration: Binary metric to evaluate whether the strategy will or will not discolor the 
material. 



In addition to technical performance, we assess technical feasibility for each strategy. Technical 
feasibility metrics evaluate the difficulty of implementing each strategy, relative to the other strategies. 
Each metric is described below: 

• Post-processing: Per MycoWorks’ preference, we only evaluated post-processing strategies. 
Here we define post-processing strategies as strategies that can be applied to the MycoWorks 
MVP material. Therefore, none of the proposed strategies affect the established manufacturing 
process for the base MycoWorks material. 

• Process complexity: Process complexity aggregates a few characteristics that define the 
complexity of the proposed strategy’s process, chiefly time, number of steps, and the 
requirement for any advanced processing steps. 

• Material availability: Metric to evaluate whether the constituent materials in the proposed 
strategy are available commercially. 

• Thermal energy requirement: To consider the full environmental impact of each strategy, we 
assess the energy input needed for each strategy. Since all of our strategies only seemed to 
require some or no thermal processing, we only consider the thermal energy required. For 
example, proposed strategies that can occur at room temperature are considered to have a low 
thermal energy requirement. 

• Innovation requirement: Since our proposed strategies come from academic literature, this 
metric evaluates whether we anticipate technical hurdles to implementing the strategy. For 
example, if a proposed strategy has already been shown to work directly on chitin-cellulose 
textile materials, then we rate this strategy to have a low innovation requirement. 

 

Technical performance evaluation for each strategy 
 
Based on the Technical Performance Framework in Table 2, we evaluate the proposed strategies and 
summarize our findings in Table 3 below. 
 

 
Table 3. Technical performance evaluation summary 
 

Cross-linker: Genipin 
 
The cross-linking strategy with genipin performs relatively well for technical performance and feasibility 
(table 3). Genipin is likely to enhance the physical properties of MycoWorks' material in priority areas 
including enhanced tensile strength (Jin et al., 2004; Zhang et al., 2010), compressive strength (Gorczyca 
et al., 2014), and hydrophobicity (Jin et al., 2004), as demonstrated from several experiments in the field 
of bioengineering. Tensile strength is the primary interest; and Zhang et al. showed that cross-linking 



hydroxybutyl chitosan scaffolds with genipin lead to a 10-fold increase in tensile strength (uncross-
linked: 2.66±0.20 MPa, cross-linked: 23.86 ±1.99 MPa, respectively). MycoWorks may be able to achieve 
similar results.  
 
Increasing the concentration of genipin also improves the elastic modulus (Butler et al., 2003), but 
increasing the incubation time makes the cross-linked material more stiff and less ductile (Zhang et al., 
2010). Optimizing the methodology is thus pertinent to achieving ideal physical properties. While we 
cannot know without laboratory tests whether cross-linking with genipin will improve the current 
materials’ flexibility, this strategy could still contribute to improved flexibility since a potential increase 
in hydrophobicity could prevent PEG from leaching out.  
 
With minimal materials and steps required, this strategy is very technically feasible since it can be 
applied post-harvesting of the MycoWorks material, all of the materials are commercially available, and 
the reaction can occur at room temperature. However, the cross-linking efficiency could likely be 
improved by increasing the incubation temperature. While there is a need to optimize experimental 
conditions, e.g. genipin concentration and pH, the research required to implement this strategy is 
minimal since it is clear that cross-linking can be achieved by mixing genipin and chitosan.  
 

Cross-linker: Enzymatically-derived o-quinone 
 
Enzymatically-driven cross-linking with tyrosinase is interesting from a technical feasibility standpoint 
but faces significant challenges regarding its potential technical performance. Specifically, we have 
evaluated the technical performance of tyrosinase as unknown and requiring additional 
experimentation and research. Enzymatically-driven cross-linking in chitosan films via tyrosinase has 
been shown to work (Kumar et al., 1999), but in a hydrogel context with little resemblance to the 
MycoWorks textile application. Besides increased viscosity in the hydrogels caused by cross-linking, no 
changes to other mechanical properties such as strength and flexibility are reported. 
  
Technical performance concerns aside, we have still included the enzymatically-driven cross-linking 
strategy based on its highly favorable technical feasibility metrics. The tyrosinase strategy, like many 
enzymatic strategies, is relatively simple, with few and simple processing steps, minimal thermal energy 
inputs, and mild pH conditions. It accepts many phenolic substracts, making it robust and relatively low 
hazard. 
 

Cross-linker: Nanocomposite 
 
The arylboronic acid-mediated solution of cross-linking a nanocomposite has attractive technical 
performance characteristics. This method significantly improves the tensile strength and elastic modulus 
of cross-linked chitin-chitosan hydrogels. Araki et al. (2012) measured the elastic modulus and stress at 
break for hydrogels with increasing chitin nanowhiskers content. Chitosan hydrogels with no added 
nanowhiskers have demonstrated an elastic modulus of 2.53 kPa and stress at break of 3.24 kPa. Adding 
2.97 wt% of chitin nanowhiskers increases the elastic modulus 7-fold and the stress at break 5.5-fold 
(17.8 kPa and 17.7 kPa, respectively). The results are more dramatic when the nanowhisker content is 
increased to 13.3 wt%. Elastic modulus improves nearly 67-fold to 169 kPa, and the stress at break 
improves nearly 42-fold to 135 kPa. While exact improvements in the MycoWorks MVP cannot be 
predicted, the magnitude of these experimental results suggests that there will be a measurable 
improvement in the strength and flexibility of MycoWorks’ material.  



  
From a feasibility standpoint, this is a more complex solution than the previous cross-linking strategies 
given the number of steps involved, the need to synthesize the nanowhiskers, and the fact that this 
strategy has not been implemented in a material like the MVP. Although chitin nanowhisker synthesis is 
simple, it adds an extra step; and working with nanomaterials may present workplace hazards that must 
be addressed. Additionally, the need to replace the dichloromethane solvent may extend the time 
required for optimization. Despite these factors, 2-iodophenylboronic acid is known to work well with a 
wide range of carboxylic acids and compounds containing primary amine functional groups.  
 

Moisture barrier: corn zein coating 
 
Overall the corn zein coating strategy’s technical performance appears promising. A study of a corn zein 
film with PEG showed the film to have a tensile strength of 6 MPa (Gennadios, 2002, Table 1.8), only 
slightly lower than that of the MycoWorks MVP (7.5 - 12.1 MPa). Therefore, we predict that the 
MycoWorks material with a corn zein coating would have at least as much tensile strength as the MVP. 
Corn zein is water-insoluble, and its films are moisture-resistant, so we expect such a coating to improve 
the water resistance of the material. A corn zein coating would act as a moisture barrier, preventing the 
PEG plasticizer from washing out. A film of pure corn zein has comparable flexibility to animal leather, 
with Young’s Modulus at 551 MPa (Gennadios, 2002, Table 2.1). Addition of the PEG plasticizer will 
further increase flexibility. 
 
All the components of this strategy are commercially available, but the process to incorporate the corn 
zein coating would require several extra steps (potentially de-colorizing the corn zein, dissolving it, 
heating and applying the solution, and evaporating the solvent), making for a somewhat complex 
process, and a moderate thermal energy requirement. 
 
The major technical performance drawback is that corn zein coatings on textiles have not been reported, 
so a significant amount of additional research will need to be done before this strategy can be employed. 
The material with the coating will need to be tested for strength, flexibility, and moisture resistance, 
since the studies we encountered deal with stand-alone films, not coatings. Further, the coating’s 
longevity through washes must be tested. The ratio of corn zein, plasticizer, and (optionally) drying oil 
must be adjusted to maximize flexibility and moisture resistance. 

  



Hazards Assessment 
Framework 
 
MycoWorks aims for the most sustainable product they can attain at every point in its lifecycle. This 
means that they must consider many health-related and ecological endpoints as they select strategies to 
improve their material. GreenScreen for Safer Chemicals (hereafter, GreenScreen) is a useful 
methodology to do so. Conducting a full GreenScreen is very time and data-intensive. Under our 
circumstances, it was untenable to fully implement this methodology. We therefore performed a 
modified GreenScreen, using their endpoints and framework but performing less intensive research 
than would be necessary for a full GreenScreen on all strategies. 
 
GreenScreen divides chemical and ecological hazards into five broad categories: chronic human health 

endpoints, acute human health endpoints, ecotoxicity, environmental fate, and physical hazard. Each of 

these classes is comprised of several specific endpoints. For example, the category "chronic human 

health endpoints" is made up of the sub-categories: carcinogenicity, mutagenicity, reproductive toxicity, 

endocrine disruption, developmental toxicity, and neurotoxicity. For all endpoints associated with each 

category, see our complete hazard table in Appendix B.   

We sought out information to characterize the hazard associated with each endpoint for every chemical 

in our strategies. We started with information-aggregating sources like the Pharos Project. Pharos 

collects information from authoritative scientific bodies around the world, making it easy to identify and 

pursue credible sources of information. We assessed the information provided by authoritative sources 

to assign hazard ratings to our chemicals. Where authoritative information was unavailable, we 

searched for academic literature that could help us assess hazard.  

If a chemical did not have a rating after our sources were exhausted, we assigned the chemical a rating 

of “data gap”. We otherwise assigned each chemical/endpoint combination a rating of low/no hazard, 

moderate hazard, or high hazard. These ratings account for the degree of certainty and the potency of 

effect. For example, a chemical that is known for certain to exert a given health effect but that only does 

so at unrealistically high concentrations might be assigned a moderate rating for that health endpoint.  

A detailed hazards table with ratings for every chemical and endpoint is available in Appendix B. For 

simplicity and interpretability, the body of the report contains summary tables for each strategy. These 

tables contain one rating per hazard category for each chemical. This rating is reflective of the most 

hazardous rating the chemical received for any endpoint within the category. For example, if a chemical 

received four "low hazard" ratings and one "high hazard" rating for ecotoxicity, the chemical has a "high 

hazard" rating for ecotoxicity in its summary table. This was done to aid health-protective decision-

making by presenting the most conservative possible representation of a chemical's safety. 

Our ultimate goal is to improve MycoWorks' material while maintaining its superior performance to 

animal leather on health and environmental endpoints. As such, we performed the process outlined 

above for chromium tanning and used its hazards as a baseline for comparison with our recommended 

strategies. We chose tanning because it is the most analogous step in the leather-making process to our 

strategies. We chose chromium tanning in particular because it is the most common way conventional 

leather is produced.  



Choice of solvent is crucial to the safety of any strategy MycoWorks chooses to implement. At the same 

time, many of the strategies we outline in this report share common solvents. We therefore exclude 

them from each strategy's summary table to make the tables more clear and conducive to comparisons 

between strategies. For the hazards associated with the various solvents involved in our strategies, see 

Table 8.  

Hazards assessment by strategy 
Cross-linker: Genipin 
 

Chemical/Strategy 

Chronic Human 
Health 

Acute Human 
Health 

Ecotoxicity Fate Physical 

Genipin M M O L L 

Table 4. Summary hazard table for cross-linking with genipin 
 
While many data gaps still exist, the overall hazard of the genipin strategy, which includes the use of a 
solvent to dissolve genipin powder and facilitate the cross-linking reactions, is moderate (Table 4). The 
risk is greater with a solvent like acetic acid, but it is a weak acid that is primarily corrosive at high 
concentrations (Table 8). MycoWorks might be able to minimize the health and environmental impact of 
the material by using a water-based solution instead if they are able to achieve an acceptable level of 
cross-linking. The environmental fate and physical/chemical hazards are also low. The ecotoxicity of 
genipin remains a data gap, but there is potential for minimal ecotoxicity since the parent compound, 
geniposide, serves as a defense mechanism for the gardenia plant as previously described.  
 
The primary human health concern of the overall strategy is acute health endpoints. No studies have 
been conducted for inhalation of genipin powder, but genipin could cause skin sensitization at low 
concentrations as illustrated by a patch test (Bircher, Sigg, Scherer Hofmeier, Schlegel, & Hauri, 2017). 
Solutions of dissolved genipin powder thus must be handled with care in an occupational setting. 
Carcinogencity and mutagencity are of probable concern at high concentrations if directly consumed 
(Hou, Tsai, Lai, Chen, & Chao, 2008; Yamazaki, Chiba, & Yoshikawa, 2009), but unlikely to occur in an 
occupational setting. Studies that examined biocompatibility and cytotoxicity of materials cross-linked 
with genipin or direct in vitro exposure to genipin also revealed good biocompatibility as well as minimal 
cytotoxicity (Fessel, Cadby, Wunderli, van Weeren, & Snedeker, 2014; Gorczyca et al., 2014; Tsai, Huang, 
Sung, & Liang, 2000; Yuan et al., 2007; Zhang et al., 2010). Risk for chronic health endpoints are thus 
likely minimal. Besides posing a probable occupational hazard, the application of this cross-linking 
strategy into the MycoWorks material will not pose a health hazard to consumers.  
  



Cross-linker: Enzymatically-derived o-quinone 
 

Chemical 

Chronic 
Human 
Health 

Acute 
Human 
Health 

Ecotoxicity Fate Physical 

Tyrosinase L M O O L 

p-Cresol M H M O M 

Table 5. Summary hazard table for tyrosinase cross-linking strategy 
 
Enzymes generally present low hazards outside of two acute human health endpoints: allergenicity and 
irritation. Exposure to a foreign protein, in this case the enzyme, can cause an adverse immune response 
mediated by allergen-specific immunoglobulin E (IgE) antibody formation. Therefore, tyrosinase would 
present a potential occupational hazard but minimal hazard to the person handling the final product.  
 
Hazards must also be considered for the phenolic substrate. In Kumar et al. (1999), p-cresol is the 
studied phenolic substrate. p-cresol admittedly presents hazards for chronic human health, ecotoxicity, 
and physical endpoints. Its main risks are severe skin burns and eye damage on contact. Fortunately, 
tyrosinase can accept many phenolic substrates (derivatives of phenol such as o-cresol), meaning 
MycoWorks can choose their phenolic substrate based on the level of hazard risk they are comfortable 
with. For other phenolic substrates that may represent lower hazard alternatives, see Halfon et al. 
(1986). 
 

Cross-linker: Nanocomposite 
 

Chemical 

Chronic 
Human 
Health 

Acute 
Human 
Health 

Ecotoxicity Fate Physical 

Chitin Nanowhiskers L H L L L 

2-iodophenylboronic acid M H L O L 

Suberic acid L M L L L 

Table 6. Summary hazard table for nanocomposite strategy 

Many nanomaterials are small enough that there are concerns that they may enter the cell and exert 

cytotoxic effects. Fortunately, this does not appear to be the case for chitin nanowhiskers (Zeng, He, Li, 

& Wang, 2012). However, respirability is still a concern due to their small size. Otherwise, chitin is 

generally thought of as relatively low-hazard; and proposed uses of chitin nanowhiskers include food 

packaging and biomedical applications (Zuber, Zia, & Barikani, 2013; Zeng, He, Li, & Wang, 2012; 

Jayakumar, Menon, Manzoor, Nair, & Tamura, 2010; Kumar, 2000; Prashanth & Tharanathan, 2007). 

Given the available information, we believe nanowhiskers to be relatively low hazard. 

Suberic acid is also of relatively low concern. Dicarboxylic acids have potential for skin, eye, and 

respiratory irritation (Johnson, Pollock, & Cantrell, 2000), but typically at high concentrations. This is a 

lesser concern as the dicarboxylic acid increases in molecular weight (Szilagyi, 2001). Apart from these 

acute health endpoints and minor evidence suggesting target organ toxicity to the kidneys (Johnson, 

Pollock, & Cantrell, 2000), dicarboxylic acids are generally thought to be non-toxic.  



There is relatively little information available for 2-iodophenyl boronic acid. Available data suggest that 

it is of low concern for ecological endpoints, but presents significant acute workplace hazards such as 

skin and eye irritation (Fail, Chapin, Price, & Heindel, 1998).  We must turn to other boronic acids for 

additional information. There is evidence to suggest that boronic acids are relatively safe from a 

neurotoxicity and mutagenicity standpoint, exerting these effects but only at unrealistically high doses 

(Soriano-Ursúa, Farfán-García, López-Cabrera, Querejeta, & Trujillo-Ferrara, 2014; Hansen, Jolly, & 

Linder, 2015). Concerningly, many boron-containing compounds are reproductive and developmental 

toxicants (Fail, Chapin, Price, & Heindel, 1998). Although, research specific to 2-iodophenyl boronic acid 

is needed for these endpoints. 

  

Moisture barrier: corn zein coating 
 

Chemical 

Chronic 
Human 
Health 

Acute 
Human 
Health 

Ecotoxicity Fate Physical 

Corn Zein L L O L L 

PEG L L L M L 

Table 7. Summary hazard table for corn zein coating 
 
Overall, the corn zein strategy presents low hazard relative to animal leather production and to the 
other strategies we propose. Corn zein, being a derivative of corn, has low inherent toxicity, although 
allergenicity could be a concern for people with a corn allergy. This would present an occupational 
hazard for corn-allergic workers handling the material, although the risk of allergenicity would be 
minimal for people handling the end product. Even the occupational allergenicity hazard is low 
compared to that of animal leather production: worker exposure to chromium, which is used as a 
tanning agent in animal leather production, can cause such severe hypersensitivity (Were, Moturi, & 
Wafula, 2014; Ahmed, Mushtaq, Khan, & Khan, 2013).  
 
The overall low toxicity of corn zein is exemplified by the fact that it is edible and reflected by its 
Generally Recognized As Safe (GRAS) designation by the FDA. However, it is important to keep in mind 
that scientific consensus on hazard is not always required to establish the GRAS label for a given food or 
food additive, so this label alone should not be cited as evidence of lack of hazard. 
 
PEG also presents overall low hazard, notably in the categories of carcinogenicity, 
mutagenicity/genotoxicity, and acute mammalian toxicity. However, data gaps exist in the categories of 
reproductive, developmental, and endocrine toxicity, as well as in neurotoxicity. As for ecotoxicity, PEG 
presents medium hazard for persistence. 
  



Solvents 

Chemical 
Strategies 

Used/Possible 

Chronic 
Human 
Health 

Acute 
Human 
Health 

Ecotoxicity Fate Physical 

Acetic acid 
Conventional 

leather, Genipin 
L H M L M 

Ethanol 
Corn zein, 
Genipin 

M H L L H 

Hydrochloric 
acid 

Nanowhiskers, 
Tyrosinase 

M H L L M 

Sodium 
hydroxide 

Nanowhiskers M H H M M 

Table 8. Summary hazard table for solvents 
 
There is substantial overlap in which strategies use which solvents. While we have attempted to 

characterize solvent hazard in the above table, this is difficult and this table should be interpreted 

cautiously. While all of our potential solvents may exert acute toxic effects (hence, the high hazard 

rating for all of them), they do so at different concentrations. Based on their chemical activities, ethanol 

and acetic acid are much less potent than hydrochloric acid and sodium hydroxide in this regard, and 

should be regarded as safer. Where possible, solvent concentrations should be adjusted to ensure 

maximum workplace safety.  

  



Comparative Analysis 
 

Strategy comparison: technical performance 
 
Overall, the genipin, nanowhiskers, and corn zein strategies demonstrated the potential to improve the 
MycoWorks material’s technical performance. Among the cross-linking strategies, genipin showed the 
potential to improve the MycoWorks material’s strength and water resistance with minimal expected 
impact on the flexibility of the material. The tyrosinase strategy’s technical performance impact is 
inconclusive based on the literature. The nanowhiskers strategy showed the ability to improve the 
strength and flexibility of materials similar to the MycoWorks material by a factor of 1.5. Across the 
remaining technical performance metrics—longevity through washes, handfeel, discoloration—we 
found inconclusive information except for genipin, may tint the material blue. 
  
From a technical feasibility standpoint, the implementation of each strategy inherently implies that the 
existing MycoWorks manufacturing process must include additional steps and complexity. Relative to 
each other, though, genipin represents the simplest cross-linking strategy, followed by the enzymatic 
strategy and the nanowhiskers strategy. The corn zein strategy should also be a relatively 
straightforward moisture barrier strategy to implement. 
 

Strategy comparison: hazard assessment 
 

Chemical / Strategy Chronic Human Health Acute Human Health Ecotoxicity Fate Physical Hazard 

Animal Leather H H H O M 

Genipin M M O L L 

Tyrosinase L M O O L 

Nanocomposite M H L O L 

Corn zein L L O L L 

Table 9. Summary hazard table for each strategy and animal leather 
 
Relative to our baseline (animal leather), our strategies had relatively few hazards. Hazards associated 
with leather tanning are outlined in detail in the introduction. Based on chromium's allergenicity, ability 
to pollute nearby water bodies, and potential to change valence state to the carcinogenic chromium(VI), 
we rate the overall hazard of animal leather tanning as high hazard. 
 
We do not regard any of our strategies as high hazard, and perceive them all to be significantly safer 
than conventional leather. The most hazardous of our strategies is the nanocomposite method. The 
potential for skin and eye irritation is strong in this strategy, and boronic acids may present chronic 
health risks such as reproductive toxicity and mutagenicity.  
 
On the other end of the spectrum, corn zein is the safest of our strategies. The only potential risk 
associated with corn zein is exposure of workers with corn allergies. Corn zein is used in food and 
pharmaceuticals, so it is otherwise relatively safe. Enzymatic cross-linking poses similar but slightly more 
severe risks to corn zein, with possible allergenicity and irritation. Tyrosinase and other enzymes are 
otherwise generally regarded as low-hazard. However, the hazards associated with the phenolic 
substrate must be considered. We presented p-cresol as an example, but tyrosinase may accept a 
variety of phenolic substrates, allowing MycoWorks to cater their substrate to their desired hazard level. 



Genipin's hazards are more severe than corn zein and tyrosinase, but less so than the nanocomposite 

strategy. We categorize genipin as moderate hazard, mostly due to the possibility of skin and eye 

irritation at relatively low concentrations. This may be mitigated with proper personal protective 

equipment, but is still an issue nonetheless. Our next, less serious concern with genipin is its potential 

for carcinogenicity and mutagenicity if directly consumed at very high concentrations. Since this is 

unlikely, it is worth keeping in mind but is not particularly concerning.  

Recommendations 
 
Among the cross-linking strategies, genipin is our front runner because the overall process is relatively 
simple and can be easily integrated into the manufacturing steps MycoWorks has already established. It 
has great potential to address desired performance properties of increased strength, flexibility, and 
hydrophobicity. However, one must note that the technical performance parameters are mostly based 
on non-textile chitosan-based composite films without cellulose, so the properties may be different. The 
performance metrics were also not reported or measured consistently across studies. A foreseeable 
downside to this strategy so far is that it will tint the material blue, but if other coloration processes are 
going to be applied post-manufacturing, it may not be relevant. Further, the concentration of genipin 
used may be modified to mitigate this problem. 
 
We also recommend testing a corn zein coating since corn zein films are a well-established moisture 
barrier. This simple addition to the MycoWorks post-harvesting process could prevent PEG from 
leeching out. The overall strategy is low-hazard, uses commercially available components, and is simple 
to implement. However, further research is needed to determine the coating's effectiveness on the 
MycoWorks material. If de-colorization is necessary, MycoWorks could apply proven de-colorization 
strategies already developed for corn zein films. Together, these cross-linking and moisture barrier 
strategies could lead to a durable MycoWorks material that is strong, flexible, and washable. 

  



Next Steps + Conclusion 
 

Next steps 
 
To apply the recommended strategies we propose several next steps. For cross-linking with genipin, 
MycoWorks should understand how the material is impacted by the various steps in the procedure 
leading to cross-linking, e.g. introduction of the material to solvents of varying pHs, as well optimize the 
processing steps for their own application. Factors that should be optimized include:  

• Amount of deacetylation needed to achieve an optimal amount of chitosan 

• Minimum genipin concentration needed to achieve acceptable material strength 

• Optimal incubation period 

• Optimal pH for cross-linking to occur and to minimize blueness 

• Temperature if room temperature is not sufficient 
 
After experimenting with the methodology and varying factors such as genipin concentration, 
MycoWorks may also want to use a scanning electron microscope (SEM) to understand the material’s 
molecular structure and degree of cross-linking in addition to testing the tensile strength and flexibility. 
Analyzing an SEM image could allow MycoWorks to identify the optimal reaction conditions to achieve 
the best product possible.  
 
Additional significant additional research is needed to determine the viability of the corn zein strategy 
for the MycoWorks material since to our knowledge, corn zein coating has not been applied to textiles. 
MycoWorks should test the durability of the coating through washing and investigate the effect of 
temperature and humidity on the coating’s performance. 
The following parameters should be optimized: 

• Choice of plasticizer(s) 

• Corn zein to plasticizer ratio 

• Coating-formation conditions 

• Choice and amount of drying oil, if the drying oil is found not to increase brittleness of the 
material 

 

Conclusion 
 
In this report, we have established the groundwork for finding greener solutions to traditional tanning 
and plasticizing chemicals used in the leather industry. Limiting our solutions to a post-harvest 
processing method that would not impact the development of MycoWorks’ minimum viable product, 
we strove to balance health and environmental safety, technical feasibility, and overall sustainability in 
the development and lifetime of the product. We established a general approach for finding a greener 
solution by identifying the functional groups of traditional chemicals and translating biological cross-
linking into chemicals. This was followed by evaluative frameworks for technical feasibility and health 
and environmental impacts.  
 
Through this process, we identified three cross-linking strategies and one moisture barrier strategy that 
have never been applied within the textile industry. While all strategies lead to the desired performance 
properties and exhibit lower hazards relative to existing chemicals used for cross-linking and enhancing 
water resistance, our understanding is limited to findings from the bioengineering and biomedical fields. 



Therefore, MycoWorks must experimentally optimize the recommended strategies to understand the 
true impacts to their material. Combining one or more of the proposed strategies could also achieve the 
optimum strength, flexibility, and durability and is worth experimenting with. Moving forward, we 
recommend that MycoWorks use our research approach, the two frameworks, and the information 
contained in this report to pursue alternatives besides the two recommended here. 
  



References 
 
Ahmed, K. D., Mushtaq, Shahida, Khan, Farooq Ahmad, & Khan, Muhammad Qaiser Alam. (2013). Toxic 

effects of chromium on tannery workers at Sialkot (Pakistan). Toxicology and Industrial Health, 

29(2), 209–215. https://doi.org/10.1177/0748233711430974   

Al-Zoubi, R. M., Marion, O., & Hall, D. G. (2008). Direct and Waste-Free Amidations and Cycloadditions 
by Organocatalytic Activation of Carboxylic Acids at Room Temperature. Angewandte Chemie 
International Edition, 47(15), 2876–2879. https://doi.org/10.1002/anie.200705468  

Annotation: This paper contains a lot of information on the details of amide bond formation using 2-
iodophenylboronic acid. The reaction is waste-free in that it is very efficient. Depending on the 
solvent used, there is 71% (in tetrahydrofuran) or 91% (in dichloromethane) amide bond 
formation between an amide and a carboxylic acid when IPBA is used. The super cool thing 
about this is that the reaction was done at room temperature, which is a big improvement on 
the energy cost of traditional methods of amide bond formation, which require much higher 
temperatures.  

 
Appel, E., Heepe, L., Lin, C.-P., & Gorb, S. N. (2015). Ultrastructure of dragonfly wing veins: composite 

structure of fibrous material supplemented by resilin. Journal of Anatomy, 227(4), 561–582. 

https://doi.org/10.1111/joa.12362 

Araki, J., Yamanaka, Y., & Ohkawa, K. (2012). Chitin-chitosan nanocomposite gels: reinforcement of 
chitosan hydrogels with rod-like chitin nanowhiskers. Polymer Journal, 44(7), 713–717. 
https://doi.org/10.1038/pj.2012.11  

Annotation: The heart of our nanowhisker strategy. Araki lays out the preparation of hydrogels 
composed of chitosan. Varying levels of chitin nanowhiskers were added to the chitosan 
hydrogel. The two were crosslinked using HDS, which forms amide bonds between the chitosan 
and chitin and bridges the two with a 6 carbon chain. HDS is synthesized in the lab from a 
diisocyanate, which is highly hazardous, so it requires a substitution – a dicarboxylic acid and a 
catalyst. The dicarboxylic acid should have a 6 carbon chain so there is no loss in the strength 
and flexibility imparted by the crosslinking of the nanowhiskers. (Group believes that the long 
carbon chain allows fibers to move more than a shorter chain length does.) Araki showed 
measurements of Young’s modulus and stress at break to show the improvement in strength 
and flexibility. 

 
Aravindhan, R., Madhan, B., Rao, J. R., Nair, B. U., & Ramasami, T. (2004). Bioaccumulation of Chromium 

from Tannery Wastewater:  An Approach for Chrome Recovery and Reuse. Environmental 
Science & Technology, 38(1), 300–306. https://doi.org/10.1021/es034427s 

 
Arnold, K., Davies, B., Giles, R. L., Grosjean, C., Smith, G. E., & Whiting, A. (2006). To Catalyze or not to 

Catalyze? Insight into Direct Amide Bond Formation from Amines and Carboxylic Acids under 
Thermal and Catalyzed Conditions. Advanced Synthesis & Catalysis, 348(7–8), 813–820. 
https://doi.org/10.1002/adsc.200606018  

 
Bircher, A. J., Sigg, R., Scherer Hofmeier, K., Schlegel, U., & Hauri, U. (2017). Allergic contact dermatitis 

caused by a new temporary blue–black tattoo dye – sensitization to genipin from jagua (Genipa 
americanaL.) fruit extract. Contact Dermatitis, n/a-n/a. https://doi.org/10.1111/cod.12844 

https://doi.org/10.1177/0748233711430974
https://doi.org/10.1002/anie.200705468
https://doi.org/10.1111/joa.12362
https://doi.org/10.1038/pj.2012.11
https://doi.org/10.1021/es034427s
https://doi.org/10.1002/adsc.200606018
https://doi.org/10.1111/cod.12844


Annotation: Genipin has been marketed as an additive for cross-linking without p-phenylenediamine in 
tattoo dyes. This case study on one subject resulted in contact dermatitis within 6 weeks of 
applying a particular tattoo dye. The patch test revealed that among the active ingredients, 
genipin tested positive for an allergic skin reaction, suggesting sensitization or allergenicity 
caused by exposure to genipin.  

 
Butler, M. F., Ng, Y.-F., & Pudney, P. D. A. (2003). Mechanism and kinetics of the crosslinking reaction 

between biopolymers containing primary amine groups and genipin. Journal of Polymer Science 
Part A: Polymer Chemistry, 41(24), 3941–3953. https://doi.org/10.1002/pola.10960 

 
Chen, H., Ouyang, W., Lawuyi, B., Martoni, C., & Prakash, S. (2005). Reaction of chitosan with genipin 

and its fluorogenic attributes for potential microcapsule membrane characterization. Journal of 
Biomedical Materials Research Part A, 75A(4), 917–927. https://doi.org/10.1002/jbm.a.30492 

 
Chen, K.-Y., Shyu, P.-C., Dong, G.-C., Chen, Y.-S., Kuo, W.-W., & Yao, C.-H. (2009). Reconstruction of 

calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin 
composite. Biomaterials, 30(9), 1682–1688. https://doi.org/10.1016/j.biomaterials.2008.12.024 

 
Chiono, V., Pulieri, E., Vozzi, G., Ciardelli, G., Ahluwalia, A., & Giusti, P. (2008). Genipin-crosslinked 

chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in 
Medicine, 19(2), 889–898. https://doi.org/10.1007/s10856-007-3212-5 

 
Chung, K.-T., Wei, C.-I., & Johnson, M. G. (1998). Are tannins a double-edged sword in biology and health? 

Trends in Food Science & Technology, 9(4), 168–175. https://doi.org/10.1016/S0924-
2244(98)00028-4 

 
Chung, K.-T., Wong, T. Y., Wei, C.-I., Huang, Y.-W., & Lin, Y. (1998). Tannins and Human Health: A Review. 

Critical Reviews in Food Science and Nutrition, 38(6), 421–464. 
https://doi.org/10.1080/10408699891274273 

 
Croston, C. B., & Evans, C., D. (1946). The Industrial Uses of Corn Protein. Transactions of the American 

Society of Mechanical Engineers, 68, 751–756.  
Annotation: The authors summarize major commercial uses of corn zein up until the 1950s, provide a 

history of production costs, and discuss basic chemistry of zein. This article is old, but shows that 
corn zein has been researched and used for over a century. Furthermore, the basic chemistry 
information is useful for understanding zein’s moisture-barrier property. 

 
D. Covington, A. (1997). Modern tanning chemistry. Chemical Society Reviews, 26(2), 111–126. 

https://doi.org/10.1039/CS9972600111 
 
Cuq, B., Gontard, N., & Guilbert, S. (1998). Proteins as Agricultural Polymers for Packaging Production. 

Cereal Chemistry Journal, 75(1), 1–9. https://doi.org/10.1094/CCHEM.1998.75.1.1 

Dixit, S., Yadav, A., Dwivedi, P. D., & Das, M. (2015). Toxic hazards of leather industry and technologies 
to combat threat: a review. Journal of Cleaner Production, 87(Supplement C), 39–49. 
https://doi.org/10.1016/j.jclepro.2014.10.017 

 

https://doi.org/10.1002/pola.10960
https://doi.org/10.1002/jbm.a.30492
https://doi.org/10.1016/j.biomaterials.2008.12.024
https://doi.org/10.1007/s10856-007-3212-5
https://doi.org/10.1016/S0924-2244(98)00028-4
https://doi.org/10.1016/S0924-2244(98)00028-4
https://doi.org/10.1080/10408699891274273
https://doi.org/10.1039/CS9972600111
https://doi.org/10.1094/CCHEM.1998.75.1.1
https://doi.org/10.1016/j.jclepro.2014.10.017


Food and Agricultural Organization of the United Nations. (2016). World Statistical Compendium for Raw 
Hides and Skins, Leather and Leather Footwear 1999-2015. Rome, Italy. 

 
Fail, P. A., Chapin, R. E., Price, C. J., & Heindel, J. J. (1998). General, reproductive, developmental, and 

endocrine toxicity of boronated compounds. Reproductive Toxicology, 12(1), 1–18. 
https://doi.org/10.1016/S0890-6238(97)00095-6 

 
Fessel, G., Cadby, J., Wunderli, S., van Weeren, R., & Snedeker, J. G. (2014). Dose- and time-dependent 

effects of genipin crosslinking on cell viability and tissue mechanics – Toward clinical application 
for tendon repair. Acta Biomaterialia, 10(5), 1897–1906. 
https://doi.org/10.1016/j.actbio.2013.12.048 

 
Gennadios, A. (2002). Protein-Based Films and Coatings. CRC Press.  
Annotation: Zein coatings are usually prepared by dissolving zein powder in aqueous ethanol or 

isopropanol, and plasticizers such as propylene glycol, glycerin, and acetylated glycerides are 
added. The product can be dipped into, sprayed with, or brushed with the zein/plasticizer 
solution. The authors also provide measures of water vapor permeability and oxygen 
permeability of zein coatings. This book is a compiles information about films and coatings 
formed of different proteins including corn zein, wheat gluten, and fish myofibrillar protein. 

 
Gorczyca, G., Tylingo, R., Szweda, P., Augustin, E., Sadowska, M., & Milewski, S. (2014). Preparation and 

characterization of genipin cross-linked porous chitosan–collagen–gelatin scaffolds using 
chitosan–CO2 solution. Carbohydrate Polymers, 102(Supplement C), 901–911. 
https://doi.org/10.1016/j.carbpol.2013.10.060 

 
Grolik, M., Szczubiałka, K., Wowra, B., Dobrowolski, D., Orzechowska-Wylęgała, B., Wylęgała, E., & 

Nowakowska, M. (2012). Hydrogel membranes based on genipin-cross-linked chitosan blends 
for corneal epithelium tissue engineering. Journal of Materials Science: Materials in Medicine, 
23(8), 1991–2000. https://doi.org/10.1007/s10856-012-4666-7 

 
Halfon, E., & Reggiani, M. G. (1986). On ranking chemicals for environmental hazard. Environmental 

Science & Technology, 20(11), 1173–1179. https://doi.org/10.1021/es00153a014 
 
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I. S., Heredia-Guerrero, J. A., & Athanassiou, A. (2017). 

Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. 

Scientific Reports, 7. https://doi.org/10.1038/srep41292 

Hansen, M. M., Jolly, R. A., & Linder, R. J. (2015, July 10). Boronic Acids and Derivatives—Probing the 
Structure–Activity Relationships for Mutagenicity - Organic Process Research & Development 
(ACS Publications). Retrieved November 2, 2017, from 
http://pubs.acs.org/doi/pdf/10.1021/acs.oprd.5b00150 

 
Harifi, T., & Montazer, M. (2012). Past, present and future prospects of cotton cross-linking: New insight 

into nano particles. Carbohydrate Polymers, 88(4), 1125–1140. 
https://doi.org/10.1016/j.carbpol.2012.02.017  

 
Hedberg, Y. S., & Lidén, C. (2016). Chromium(III) and chromium(VI) release from leather during 8 months 

of simulated use. Contact Dermatitis, 75(2), 82–88. https://doi.org/10.1111/cod.12581 

https://doi.org/10.1016/S0890-6238(97)00095-6
https://doi.org/10.1016/j.actbio.2013.12.048
https://doi.org/10.1016/j.carbpol.2013.10.060
https://doi.org/10.1007/s10856-012-4666-7
https://doi.org/10.1021/es00153a014
https://doi.org/10.1038/srep41292
http://pubs.acs.org/doi/pdf/10.1021/acs.oprd.5b00150
https://doi.org/10.1016/j.carbpol.2012.02.017
https://doi.org/10.1111/cod.12581


 
Hou, Y. C., Tsai, S. Y., Lai, P. Y., Chen, Y. S., & Chao, P. D. L. (2008). Metabolism and pharmacokinetics of 

genipin and geniposide in rats. Food and Chemical Toxicology, 46(8), 2764–2769. 
https://doi.org/10.1016/j.fct.2008.04.033  

Annotation: This study explored how geniposide is metabolized in vivo via a rat model. Geniposide is 
metabolized into genipin which is then metabolized into genipin sulfate. Post-metabolism, 
genipin sulfate was found in plasma whereas genipin was not, suggesting rapid metabolism 
during the first pass through the liver and intestine. 7/9 rats that received 200 mg/kg of genipin 
died while 8/8 rats that received 100 mg/kg of genipin all survived well throughout the study. 
This suggests that genipin is toxic at higher concentrations and dosage should be properly 
decided to ensure safety. 

 
Ifuku, S. (2014). Chitin and Chitosan Nanofibers: Preparation and Chemical Modifications. Molecules, 

19(11), 18367–18380. https://doi.org/10.3390/molecules191118367  
Annotation: This paper has instructions on how to produce chitin and chitosan nanowhiskers from 

various sources of chitin. It is useful because it details how to derive chitin nanowhiskers from 
commercial chitin powders. This method is simple, requiring acidic water and a grinder. There is 
an explanation about the underlying forces which allow this method to work. This ease of 
conversion was attributed also to the electrostatic repulsion effect as described above. The 
repulsive force caused by the cationization of amino groups facilitated fibrillation into NFs. 

 
Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., & Tamura, H. (2010). Biomedical applications of chitin 

and chitosan based nanomaterials—A short review. Carbohydrate Polymers, 82(2), 227–232. 
https://doi.org/10.1016/j.carbpol.2010.04.074 

 
Jin, J., Song, M., & Hourston, D. J. (2004). Novel Chitosan-Based Films Cross-Linked by Genipin with 

Improved Physical Properties. Biomacromolecules, 5(1), 162–168. 
https://doi.org/10.1021/bm034286m 

 
Johnson, R. W., Pollock, C. M., & Cantrell, R. R. (2000). Dicarboxylic Acids. In Kirk-Othmer Encyclopedia of 

Chemical Technology. John Wiley & Sons, Inc. Retrieved from 
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0409030110150814.a01.pub2/abstract 

 
Konno, K., Sabelis, J. M., Takabayashi, J., Sassa, J. T., & Oikawa, H. (2010). 4.08 Chemical Defence and 

Toxins of Plants.  
Annotation: Good paper that explains the class of plant metabolites that geniposide is in and can be 

referred to if MycoWorks wants to pursue other compounds that might not cause a blue side-
effect but potentially leads to effective cross-linking. 

 
Kumar G, Bristow JF, Smith PJ, Payne GF. Enzymatic gelation of the natural polymer chitosan. Polymer. 

2000;41(6):2157-2168. https://doi.org/10.1016/S0032-3861(99)00360-2  
Annotation: In this paper, the authors demonstrate an enzymatic method to form chitosan gels. The 

authors use the enzyme tyrosinase to convert a phenolic substrate (p-cresol) into the more 
reactive o-quinone, which then reacts with chitosan. The authors are not sure of the exact 
chemistry going on, but they have evidence that o-quinone acts as a cross-linker with the 
chitosan. The cross-linking results in a more viscous gel.  

 

https://doi.org/10.1016/j.fct.2008.04.033
https://doi.org/10.3390/molecules191118367
https://doi.org/10.1016/j.carbpol.2010.04.074
https://doi.org/10.1021/bm034286m
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.0409030110150814.a01.pub2/abstract
https://doi.org/10.1016/S0032-3861(99)00360-2


Kumar, M. N. V. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 
46(1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9 

 
Leung, H.-W. (2001). Ecotoxicology of Glutaraldehyde: Review of Environmental Fate and Effects Studies. 

Ecotoxicology and Environmental Safety, 49(1), 26–39. https://doi.org/10.1006/eesa.2000.2031 
 
Liu, Y., & Kim, H.-I. (2012). Characterization and antibacterial properties of genipin-crosslinked 

chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydrate Polymers, 89(1), 111–
116. https://doi.org/10.1016/j.carbpol.2012.02.058 

 
Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry, 

67(21), 2318-2331. 
 
Mi, F.-L., Shyu, S.-S., & Peng, C.-K. (2005). Characterization of ring-opening polymerization of genipin and 

pH-dependent cross-linking reactions between chitosan and genipin. Journal of Polymer Science 
Part A: Polymer Chemistry, 43(10), 1985–2000. https://doi.org/10.1002/pola.20669 

 
Mi, F.-L., Sung, H.-W., & Shyu, S.-S. (2000). Synthesis and characterization of a novel chitosan-based 

network prepared using naturally occurring crosslinker. Journal of Polymer Science Part A: 
Polymer Chemistry, 38(15), 2804–2814. https://doi.org/10.1002/1099-
0518(20000801)38:15<2804::AID-POLA210>3.0.CO;2-Y 

 
Mu, C., Guo, J., Li, X., Lin, W., & Li, D. (2012). Preparation and properties of dialdehyde carboxymethyl 

cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27(1), 22–29. 
https://doi.org/10.1016/j.foodhyd.2011.09.005 

 
Muzzarelli, R. A. A. (2009). Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical 

aids. Carbohydrate Polymers, 77(1), 1–9. https://doi.org/10.1016/j.carbpol.2009.01.016  
 
Oh, D. X., & Hwang, D. S. (2013). A biomimetic chitosan composite with improved mechanical properties 

in wet conditions. Biotechnology Progress, 29(2), 505–512. https://doi.org/10.1002/btpr.1691  
 
Paik, Y.-S., Lee, C.-M., Cho, M.-H., & Hahn, T.-R. (2001). Physical Stability of the Blue Pigments Formed 

from Geniposide of Gardenia Fruits:  Effects of pH, Temperature, and Light. Journal of 
Agricultural and Food Chemistry, 49(1), 430–432. https://doi.org/10.1021/jf000978f 

 
Pattabiraman, V. R., & Bode, J. W. (2011). Rethinking amide bond synthesis. Nature, 480(7378), 

nature10702. https://doi.org/10.1038/nature10702 
Annotation: Ideas for how to form amide bonds that doesn’t involve diisocyanates. Looking to replace 

HDS, thus the catalyst for the amide bond formation needs to be a lower hazard than HDS. 
Several suggestions are made, though most use chemicals that are also hazardous, for example 
metals. Most promising is the boronic acid catalysts. 2-iodophenylboronic acid and 3,4,5-
trifluorophenylboronic acid are mentioned in the section. Looking into details of the two, 2-
iodophenylboronic acid is the most promising. It is also cited as being a greener solution for 
amidation of carboxylic acids.  

 

https://doi.org/10.1016/S1381-5148(00)00038-9
https://doi.org/10.1006/eesa.2000.2031
https://doi.org/10.1016/j.carbpol.2012.02.058
https://doi.org/10.1002/pola.20669
https://doi.org/10.1002/1099-0518(20000801)38:15%3c2804::AID-POLA210%3e3.0.CO;2-Y
https://doi.org/10.1002/1099-0518(20000801)38:15%3c2804::AID-POLA210%3e3.0.CO;2-Y
https://doi.org/10.1016/j.foodhyd.2011.09.005
https://doi.org/10.1016/j.carbpol.2009.01.016
https://doi.org/10.1002/btpr.1691
https://doi.org/10.1021/jf000978f
https://doi.org/10.1038/nature10702


Peng, H., Xiong, H., Li, J., Xie, M., Liu, Y., Bai, C., & Chen, L. (2010). Vanillin cross-linked chitosan 
microspheres for controlled release of resveratrol. Food Chemistry, 121(1), 23–28. 
https://doi.org/10.1016/j.foodchem.2009.11.085 

 
Pinheiro, A., Cooley, A., Liao, J., Prabhu, R., & Elder, S. (2016). Comparison of natural crosslinking agents 

for the stabilization of xenogenic articular cartilage. Journal of Orthopaedic Research, 34(6), 
1037–1046. https://doi.org/10.1002/jor.23121 

 
Pires, C. T. G. V. M. T., Vilela, J. A. P., & Airoldi, C. (2014). The Effect of Chitin Alkaline Deacetylation at 

Different Condition on Particle Properties. Procedia Chemistry, 9(Supplement C), 220–225. 
https://doi.org/10.1016/j.proche.2014.05.026  

 
Prashanth, K. V. H., & Tharanathan, R. N. (2007). Chitin/chitosan: modifications and their unlimited 

application potential—an overview. Trends in Food Science & Technology, 18(3), 117–131. 
https://doi.org/10.1016/j.tifs.2006.10.022 

 
Raabe, D., Sachs, C., & Romano, P. (2005). The crustacean exoskeleton as an example of a structurally 

and mechanically graded biological nanocomposite material. Acta Materialia, 53(15), 4281–
4292. https://doi.org/10.1016/j.actamat.2005.05.027  

 
Ridoutt, B. G., Page, G., Opie, K., Huang, J., & Bellotti, W. (2014). Carbon, water and land use footprints 

of beef cattle production systems in southern Australia. Journal of Cleaner Production, 
73(Supplement C), 24–30. https://doi.org/10.1016/j.jclepro.2013.08.012 

 
Sampaio, G. Y. H., Fook, A. C. B. M., Fidéles, T. B., Cavalcanti, M. E. R. R. M., & Fook, M. V. L. (2014). 

Biodegradable Chitosan Scaffolds: Effect of Genipin Crosslinking. Materials Science Forum, 805, 
116–121. https://doi.org/10.4028/www.scientific.net/MSF.805.116 

 
Schweigert, N., Zehnder, A. J. B., & Eggen, R. I. L. (2001). Chemical properties of catechols and their 

molecular modes of toxic action in cells, from microorganisms to mammals. Environmental 
Microbiology, 3(2), 81–91. https://doi.org/10.1046/j.1462-2920.2001.00176.x 

 
Sessa, D., J Eller, F., E Palmquist, D., & W Lawton, J. (2003). Improved methods for decolorizing corn zein. 

Industrial Crops and Products, 18, 55–65. https://doi.org/10.1016/S0926-6690(03)00033-5 
 
Shukla, R., & Cheryan, M. (2001). Zein: the industrial protein from corn. Industrial Crops and Products, 

13(3), 171–192. https://doi.org/10.1016/S0926-6690(00)00064-9  
Annotation: The authors discuss how corn zein is currently produced and in what products it is 

commonly used. They explain that corn zein is not used in food items since it lacks essential 
amino acids such as lysine and tryptophan, and is therefore of low nutritional quality. The 
authors also describe the chemical composition of zein and the protein structure, as well as 
methods for maintaining zein in a liquid rather than gel state – this is essential for applying it as 
a coating. 

 
Slusarewicz, P., Zhu, K., & Hedman, T. (2010). Kinetic characterization and comparison of various protein 

crosslinking reagents for matrix modification. Journal of Materials Science: Materials in 
Medicine, 21(4), 1175–1181. https://doi.org/10.1007/s10856-010-3986-8 

 

https://doi.org/10.1016/j.foodchem.2009.11.085
https://doi.org/10.1002/jor.23121
https://doi.org/10.1016/j.proche.2014.05.026
https://doi.org/10.1016/j.tifs.2006.10.022
https://doi.org/10.1016/j.actamat.2005.05.027
https://doi.org/10.1016/j.jclepro.2013.08.012
https://doi.org/10.4028/www.scientific.net/MSF.805.116
https://doi.org/10.1046/j.1462-2920.2001.00176.x
https://doi.org/10.1016/S0926-6690(03)00033-5
https://doi.org/10.1016/S0926-6690(00)00064-9
https://doi.org/10.1007/s10856-010-3986-8


Soriano-Ursúa, M. A., Farfán-García, E. D., López-Cabrera, Y., Querejeta, E., & Trujillo-Ferrara, J. G. 
(2014). Boron-containing acids: Preliminary evaluation of acute toxicity and access to the brain 
determined by Raman scattering spectroscopy. NeuroToxicology, 40(Supplement C), 8–15. 
https://doi.org/10.1016/j.neuro.2013.10.005 

 
Swenberg, J. A., Moeller, B. C., Lu, K., Rager, J. E., Fry, R. C., & Starr, T. B. (2013). Formaldehyde 

Carcinogenicity Research: 30 Years and Counting for Mode of Action, Epidemiology, and Cancer 
Risk Assessment. Toxicologic Pathology, 41(2), 181–189. 
https://doi.org/10.1177/0192623312466459 

 
Szilagyi, M. (2001). Aliphatic Carboxylic Acids: Saturated. In Patty’s Toxicology. John Wiley & Sons, Inc. 

Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/0471435139.tox070.pub2/abstract 
 
Takigawa, T., & Endo, Y. (2006). Effects of glutaraldehyde exposure on human health. Journal of 

Occupational Health, 48(2), 75–87. 
 
Tsai, C.-C., Huang, R.-N., Sung, H.-W., & Liang, H. C. (2000). In vitro evaluation of the genotoxicity of a 

naturally occurring crosslinking agent (genipin) for biologic tissue fixation. Journal of Biomedical 
Materials Research, 52(1), 58–65. https://doi.org/10.1002/1097-4636(200010)52:1<58::AID-
JBM8>3.0.CO;2-0 

Annotation: The findings of this study contrasted that of some others that studied the long-term effect 
of taking Chinese medicine with the gardenia fruit extract for about an average of 20 years. They 
determined that the maximum concentration before mutagenicity occurs is 50 ppm, which is 
equivalent to 50 mg/L. This is another study that suggests that genipin is toxic at high 
concentrations.  

 
Upadhyay, G., Gupta, S. P., Prakash, O., & Singh, M. P. (2010). Pyrogallol-mediated toxicity and natural 

antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations. 
Chemico-Biological Interactions, 183(3), 333–340. https://doi.org/10.1016/j.cbi.2009.11.028 

 
Were, F. H., Moturi, M. Charles, & Wafula, Godfrey A. (2014). Chromium Exposure and Related Health 

Effects among Tannery Workers in Kenya. Journal of Health & Pollution, 4(7). 

Xu, Y., Li, L., Yu, X., Gu, Z., & Zhang, X. (2012). Feasibility study of a novel crosslinking reagent (alginate 
dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 87(2), 1589–1595. 
https://doi.org/10.1016/j.carbpol.2011.09.059 

 
Yamazaki, M., Chiba, K., & Yoshikawa, C. (2009). Genipin Suppresses A23187-Induced Cytotoxicity in 

Neuro2a Cells. Biological and Pharmaceutical Bulletin, 32(6), 1043–1046. 
https://doi.org/10.1248/bpb.32.1043 

 
Yoo, J. S., Kim, Y. J., Kim, S. H., & Choi, S. H. (2011). Study on Genipin: A New Alternative Natural 

Crosslinking Agent for Fixing Heterograft Tissue. The Korean Journal of Thoracic and 
Cardiovascular Surgery, 44(3), 197–207. https://doi.org/10.5090/kjtcs.2011.44.3.197 

 
Yuan, Y., Chesnutt, B. M., Utturkar, G., Haggard, W. O., Yang, Y., Ong, J. L., & Bumgardner, J. D. (2007). 

The effect of cross-linking of chitosan microspheres with genipin on protein release. 
Carbohydrate Polymers, 68(3), 561–567. https://doi.org/10.1016/j.carbpol.2006.10.023 

https://doi.org/10.1016/j.neuro.2013.10.005
https://doi.org/10.1177/0192623312466459
http://onlinelibrary.wiley.com/doi/10.1002/0471435139.tox070.pub2/abstract
https://doi.org/10.1002/1097-4636(200010)52:1%3c58::AID-JBM8%3e3.0.CO;2-0
https://doi.org/10.1002/1097-4636(200010)52:1%3c58::AID-JBM8%3e3.0.CO;2-0
https://doi.org/10.1016/j.cbi.2009.11.028
https://doi.org/10.1016/j.carbpol.2011.09.059
https://doi.org/10.1248/bpb.32.1043
https://doi.org/10.5090/kjtcs.2011.44.3.197
https://doi.org/10.1016/j.carbpol.2006.10.023


 
Zeng, J.-B., He, Y.-S., Li, S.-L., & Wang, Y.-Z. (2012). Chitin Whiskers: An Overview. Biomacromolecules, 

13(1), 1–11. https://doi.org/10.1021/bm201564a 
 
Zhai, W., Chang, J., Lin, K., Wang, J., Zhao, Q., & Sun, X. (2006). Crosslinking of decellularized porcine 

heart valve matrix by procyanidins. Biomaterials, 27(19), 3684–3690. 
https://doi.org/10.1016/j.biomaterials.2006.02.008 

 
Zhang, K., Qian, Y., Wang, H., Fan, L., Huang, C., Yin, A., & Mo, X. (2010). Genipin-crosslinked silk 

fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. Journal 
of Biomedical Materials Research Part A, 95A(3), 870–881. https://doi.org/10.1002/jbm.a.32895 

 
Zhang Y, Ji C. Electro-Induced Covalent Cross-Linking of Chitosan and Formation of Chitosan Hydrogel 

Films: Its Application as an Enzyme Immobilization Matrix for Use in a Phenol Sensor. Anal Chem. 
2010;82(12):5275-5281. http://pubs.acs.org/doi/abs/10.1021/ac100714s  

Annotation: This manuscript studies an enzymatic method for inducing covalent cross-linking in chitosan 
to create hydrogels. Specfically, the authors use tyrosinase, an enzyme derived from fungus. The 
results indicate that tyrosinase can successfully induce cross-linking in chitosan  

 
Zheng, C., YunYu, H., & Al), P. W. (et. (2009). Effect of temperature on crosslinking of collagen/chitosan 

scaffolds with genipin. Zhongguo Jiaoxing Waike Zazhi / Orthopedic Journal of China, 17(3), 217–
220. 

 
Zuber, M., Zia, K. M., & Barikani, M. (2013). Chitin and Chitosan Based Blends, Composites and 

Nanocomposites. In Advances in Natural Polymers (pp. 55–119). Springer, Berlin, Heidelberg. 
Retrieved from https://link.springer.com/chapter/10.1007/978-3-642-20940-6_3 

  

https://doi.org/10.1021/bm201564a
https://doi.org/10.1016/j.biomaterials.2006.02.008
https://doi.org/10.1002/jbm.a.32895
http://pubs.acs.org/doi/abs/10.1021/ac100714s
https://link.springer.com/chapter/10.1007/978-3-642-20940-6_3


Appendices 
 

Appendix A: Record of Methodologies 
 
Approach 
 
In the animal kingdom the armored scales of fish, the strong carapaces of arthropods, and the flexible 
‘shells’ of cephalopods demonstrate the varied applications of chitin in the naturally-evolved world. 
These creatures use strategies which include natural tanning, cross-linking, and the formation of 
nanocomposites to change the innate physical properties of chitin. On its own chitin is not very durable, 
strong, or flexible; its ability to be transformed on the molecular- and nano-scales makes it a malleable 
material for use as a base in many applications.  
  
Knowing that many living creatures use chitin in varied ways, our first step was to look to nature for 
inspiration. We looked at crustaceans, jellyfish, beetles, and even kelp to get an idea of how nature 
builds materials which are durable, strong, and flexible. Existing work which focused on analysis and 
mimicry of arthropod cuticles held the most directly-applicable path of inquiry. Initial forays led us to 
interesting done to create chitin and chitosan films and hydrogels. Most of the techniques we 
researched use compounds and solvents which are problematic from health, environment, and worker 
exposure perspectives. We did, however, learn about the underlying chemical mechanisms driving 
cross-linking in chitin and chitosan. We chose to investigate the nanocomposite cross-linking strategy.  
 
Enzyme-based solutions are generally less hazardous and more sustainable than chemistry-based 
solutions, so we sought out ways to induce cross-linking using enzymes. This research resulted in the 
tyrosinase-mediated cross-linking strategy.  
 
We also investigated the chemical mechanisms used to cross-link proteins in leather processing. With an 
understanding of the chemical reactions induced by catechol and pyrogallol tannins we searched for a 
direct replacement which could perform the same function in chitosan. The genipin cross-linking 
solution was produced by this research. 
 
Examples of search queries 
 
Undirected queries: 

• poly carbamoyl sulfonate crosslinking mechanism 

• glutaraldehyde crosslinking chitin tensile strength 

• malondialdehyde crosslinking tensile "strength" 

• piperidine chrome tanning 

• pyridine chrome tanning 

• Carboxymethyl cellulose tensile strength chitin 

• jellyfish mesogloea structure 

• mtgase cross-linking chitin 
Natural cross-linkers: 

• alternative to glutaraldehyde crosslinking* vanillin 

• chitosan genipin cross linking tensile "strength" strain 

• chitosan genipin tensile strength 



• chitosan "genipin" "tensile strength" 
Enzymatic cross-linking: 

• enzyme cross-linking chitosan film 
Nanocomposite cross-linking: 

• chitosan hydrogels 

• amide bond catalysts 

• green amide bond formation 

• iodophenylboronic acid 

• Wikipedia search for dicarboxylic acids 

• green screen assessment for dichloromethane 
Moisture barriers: 

• protein-based food packaging coatings 

• compostable food packaging coatings 

• water insoluble proteins films 

• corn zein coating textiles 

• corn zein film moisture resistance 

• corn zein film plasticizer 

• drying oil moisture resistance 
 

 

 

 

 



Appendix B: Full Hazards Assessment Table 
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Appendix C: Alternative Solvents 
 
In literature the catalyst 2-iodophenylboronic acid catalyzes amide bond formation between carboxylic 
acids and primary amines while dissolved in dichloromethane. As the hazard assessment shows, this 
solvent is not ideal for use in an occupational setting since it is a known carcinogen. Dichloromethane is 
used extensively in paint and varnish strippers, thus it became a “priority product” for replacement 
under the California Safer Consumer Products regulations. BizNGO, a collaboration between universities, 
government, environmental groups, and consumer products manufacturers, used the GreenScreen 
comparative hazard assessment method to direct a search for safer alternatives to dichloromethane. In 
total eleven alternatives were identified, and their GreenScreen hazard assessments included in the 
report (Jacobs, Wang, & Rossi, 2015). Below we have attached the assessment for each alternative, 
however we strongly suggest reading the entire report as it is available for free.  
 

 
 
Figure ___. GreenScreen comparative hazard assessment of dichloromethane and its alternatives 
(Jacobs et al., 2015) 
 
References: 
 Jacobs, M., Wang, B., & Rossi, M. S. (2015). Alternatives to Methylene Chloride in Paint and Varnish 
Strippers. BizNGO. Accessed November 29, 2017. http://www.bizngo.org/alternatives-
assessment/methylene_report_request  

http://www.bizngo.org/alternatives-assessment/methylene_report_request
http://www.bizngo.org/alternatives-assessment/methylene_report_request


Appendix D: Potential strategies for deacetylating chitin  
 
Although the polysaccharide chitin is theoretically composed of N-acetylglucosamine units, in nature it 
also contains deacetylated units, called glucosamine units, randomly interspersed. The difference 
between the two is that the acetamide functional group on N-acetylglucosamine has been deacetylated 
and is a primary amine on glucosamine. Primary amines are readily available for a variety of cross-linking 
chemical reactions. Thus the more glucosamine groups available on chitin the more cross-linking can 
occur. Once glucosamine makes up 50% or more of the polysaccharide, it is called chitosan instead of 
chitin.  
 
Deacetylation of chitin is necessary to make it able to cross-link. In fungal species a subset of enzymes 
called carbohydrate esterase enzymes, also known as chitin deacetylases, catalyze the transformation of 
N-acetylclucosamine into glucosamine (Geoghegan & Gurr, 2017). This class of enzymes is not 
commercially available at this time.  
 
The most common and most cost effective method to deacetylate chitin is through treatment with 
sodium hydroxide (NaOH). Various conditions have been employed. Below are the conditions as 
reported in literature. Full deacetylation of the MycoWorks MVP is neither needed nor desired. The time 
and temperature for incubation with sodium hydroxide should be lowered as necessary to ensure the 
material does not become overly acetylated.  

• Chitin added to an aqueous 40% by weight sodium hydroxide solution. Heated to a high 
temperature, though below boiling (e.g. 80°C). It is held at this temperature until the desired 
degree of acetylation (DA) is reached. The longer the reaction is done, the lower the DA 
(Tolaimate et al., 2000) Three hours results in DA of 25%, 6 hours in DA of 3%, and 9 h ours in DA 
of 1%.  

• If the deacetylation reaction in 40% NaOH is done at 60°C it is easier to control the degree of 
deacetylation, though the reaction does take longer (Min et al., 2004) 

  
• Chitin added to 2M aqueous sodium hydroxide solution. Held at 24°C (75°F) for 3 hours. The DA 

decreased from 40.8% to 26.3% (Pires, Vilela, & Airoldi, 2014).  

• Another study was done to determine the influence on the degree of acetylation by different 
time and temperature combinations (Chang, Tsai, Lee, & Fu, 1997) 



 
 
A third approach to deacetylating chitin is known as the Broussignac method. It uses a reagent a mixture 
of solid potassium hydroxide (50%, w/w), 96° ethanol (25%, w/w) and monoethyleneglycol (25%, w/w) 
(Tolaimate et al., 2000). Chitin is added and the mixture is heated. After 2 hours at 120°C the degree of 
acetylation is 4% (Tolaimate et al., 2000). 
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Appendix E: Additional Potential Strategies for R&D 
 
Enzymatic cross-linking 
 
Carbohydrate-binding modules 
 
Reference: Malho J-M, Arola S, Laaksonen P, Szilvay GR, Ikkala O, Linder MB. Modular Architecture of  

Protein Binding Units for Designing Properties of Cellulose Nanomaterials. Angew Chem Int Ed. 
2015;54(41):12025-12028. doi:10.1002/anie.201505980. 
 

Annotation: This manuscript explores the use of carbohydrate-binding modules (CBMs) for  
crosslinking and tuning the mechanical properties of cellulosic materials. This strategy is inspired 
by the hierarchical structures found in biological materials, where the mutliple length scales 
imbue the dual properties of high strength and flexibility. The key insight from the authors is 
examining the relationship between –mer linker length in the CBMs and its effect on the 
mechanical properties of the wet and dry cellulose films. 

 
Transglutaminase 
 
Reference: http://www.cookingissues.com/transglutaminase-aka-meat-glue/index.html 
 
Reference: Chen, T., Embree, H. D., Brown, E. M., Taylor, M. M., & Payne, G. F. (2003). Enzyme- 

catalyzed gel formation of gelatin and chitosan: potential for in situ  
applications. Biomaterials, 24(17), 2831-2841. 

 
Annotation: Transglutaminase is an enzyme that has found popularity recently in the molecular  

gastronomy community. Colloquially termed “meat glue,” transglutaminase is a naturally 
occurring enzyme that modern chefs used to bind meat proteins together. The key question 
with this strategy is whether chitosan can be cross-linking to itself or chitin and cellulose. Given 
its prevalence in the food industry, most work has looked at transglutaminase cross-linking for 
creating edible films (e.g. chitosan + gelatain) rather than mechanically strong materials. 

  

http://www.cookingissues.com/transglutaminase-aka-meat-glue/index.html
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