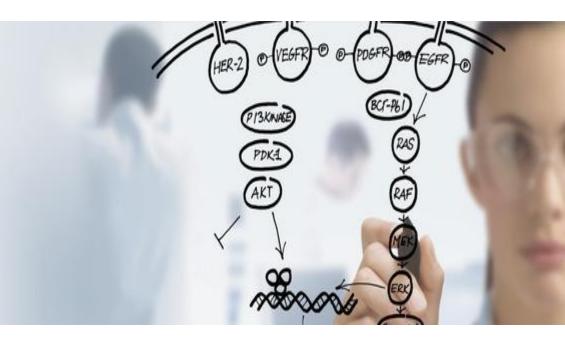
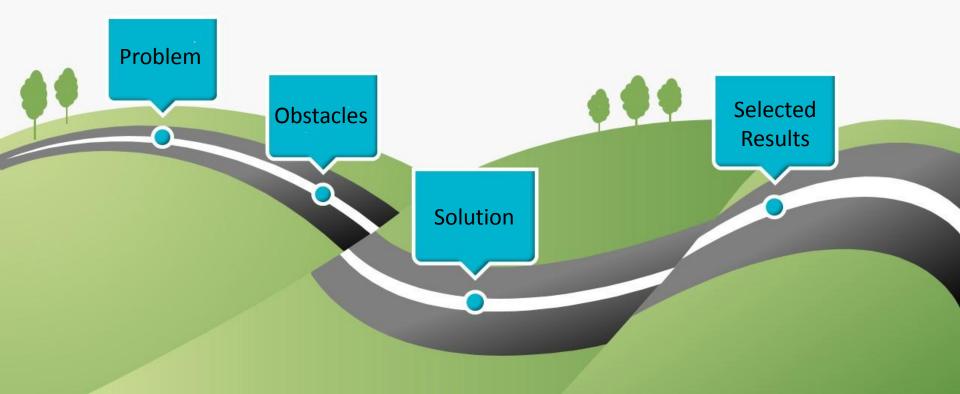
Identifying and Evaluating Alternative Materials:

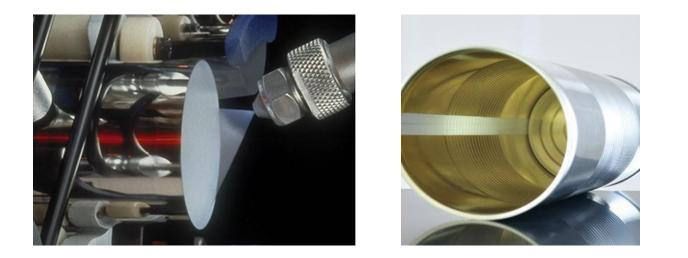
Case Study

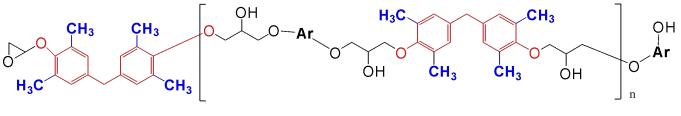

Mark Maier, PhD DABT Maricel Maffini, PhD

4- Nov-2016

GROWTH INNOVATION SOLUTIONS SUCCESS

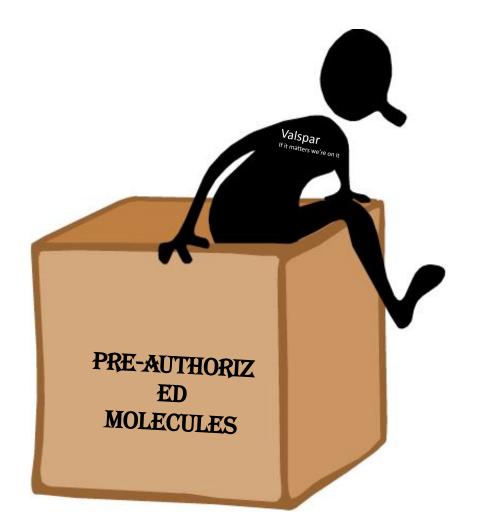


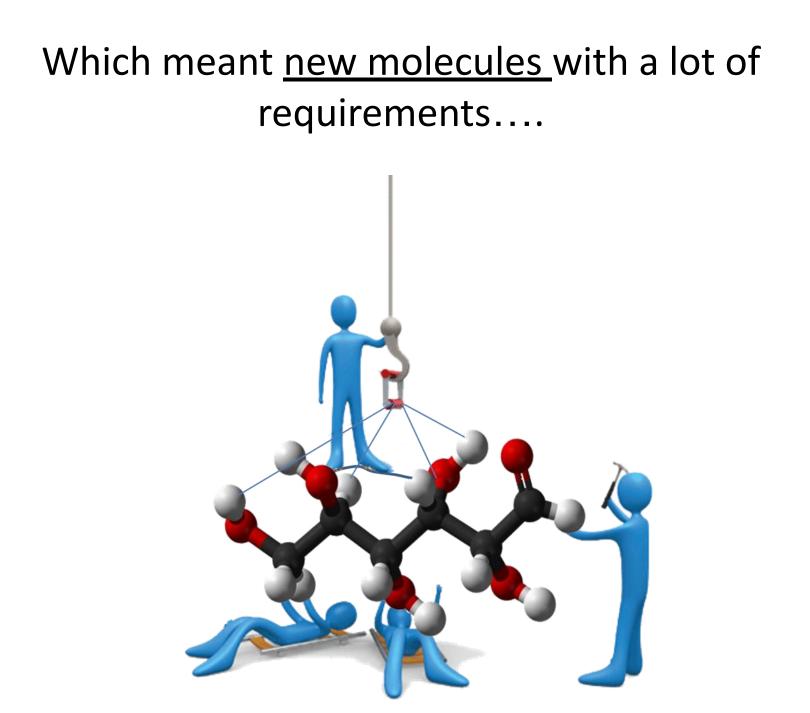

Journey of Reverse Drug Discovery...

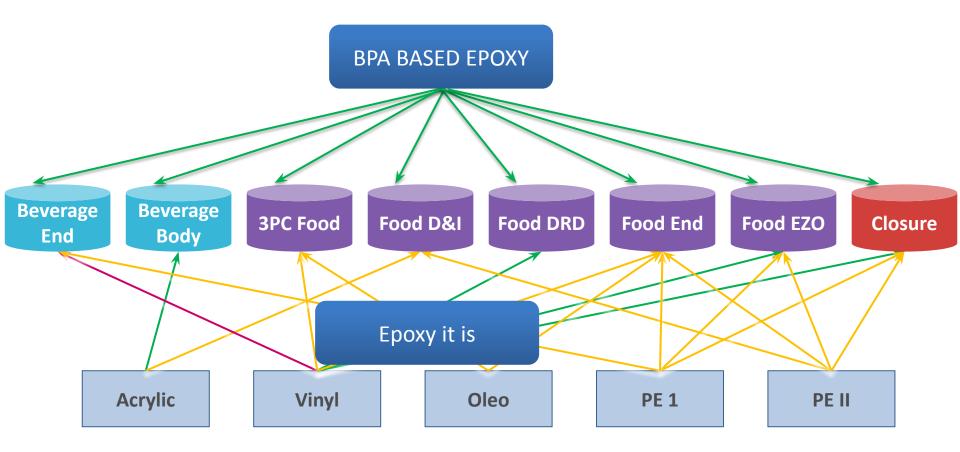

Valspar non-BPA Replacement

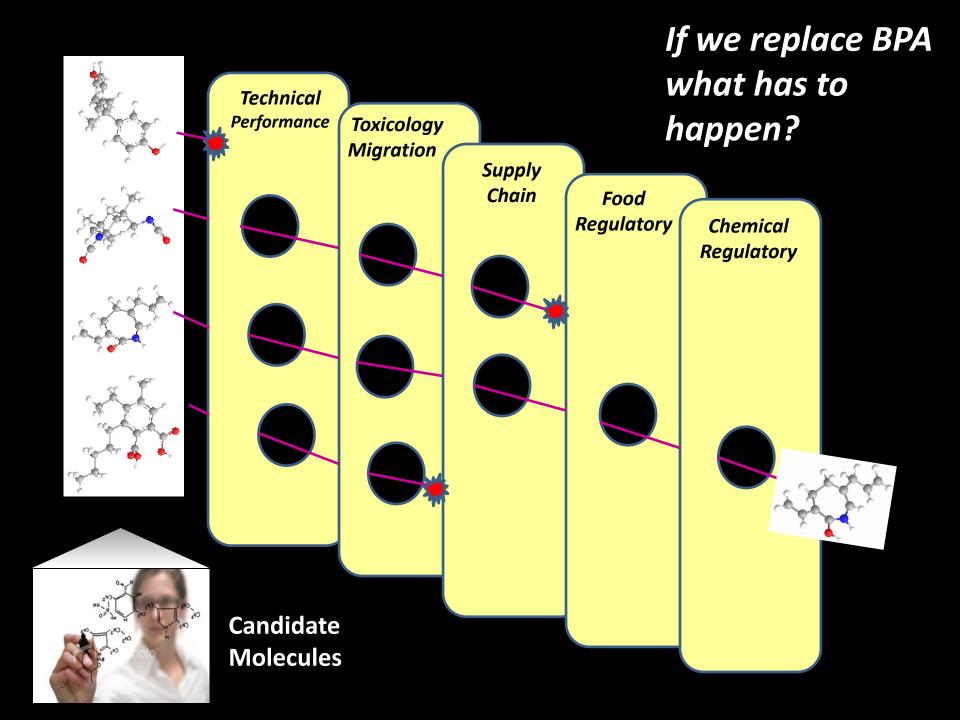
Non-BPA Food-Contact Epoxy

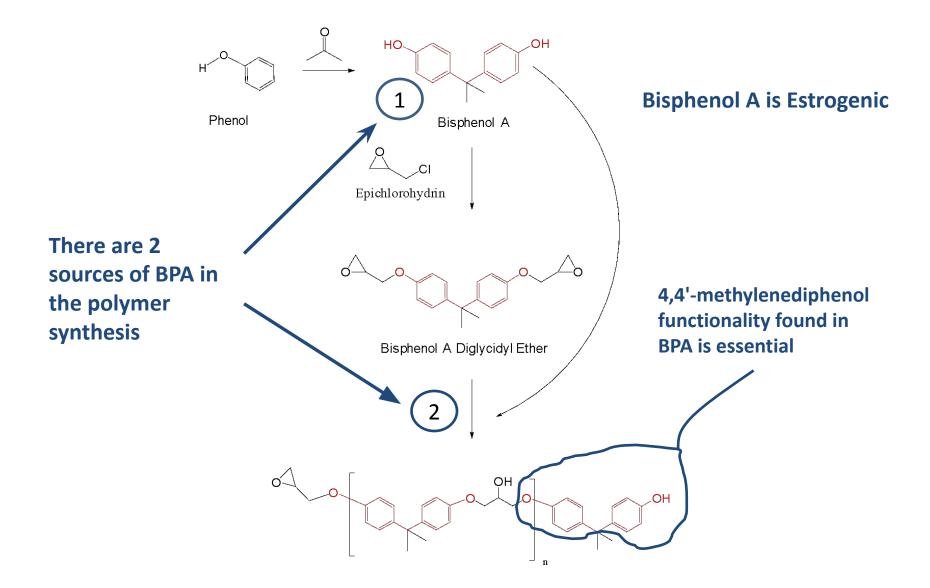
V70 Polymer

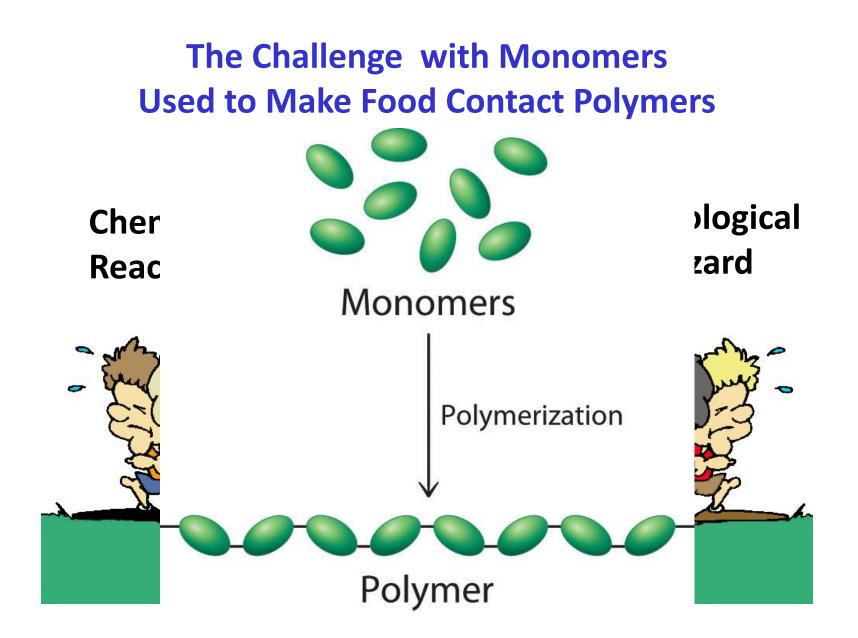

Historically


Both Valspar and its competitors made new coatings using preauthorized monomers listed "in the box"


Monomer Lists EU Commission Regulations FDA 21CFR175.300

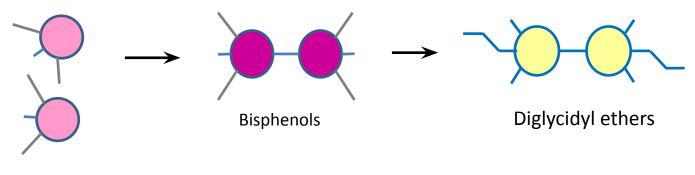

To accomplish performance goals, Valspar had to get out of the box




To replace BPA what choices are there?

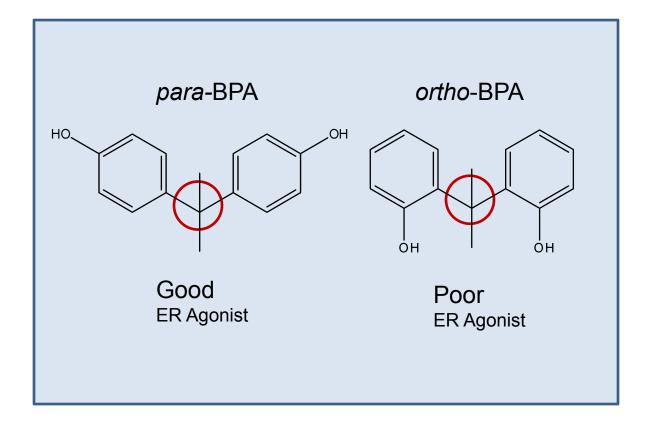
What do we know from BPA epoxy?

... So we needed molecules that react with each other ... but like reverse drug discovery physiologically, do...



Find some molecules that aren't

- Estrogenic
- Genotoxic

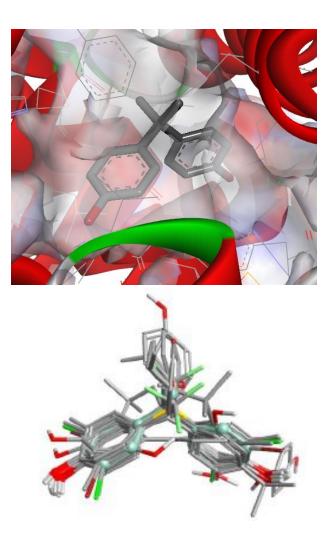


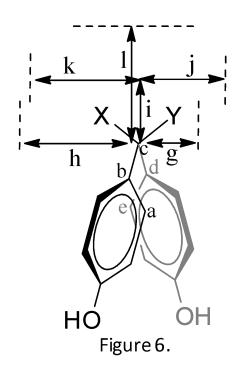
Xylenols

Problem

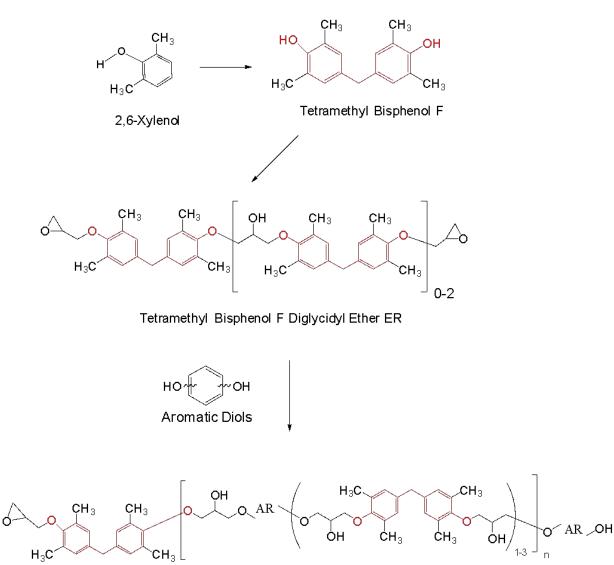
- Bisphenols are the only commercially viable source for 4,4'-methylenediphenol functionality, many are estrogenic
 - Diglycidyl ethers alert for mutagenicity

We started Screening Bisphenols for Activity by asking what's with BPA?




Inactive - Ortho BPA

Active - Para BPA



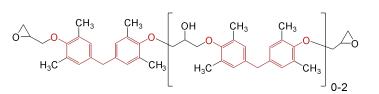
What structural attributes best predict ER inactivity?

V70 Route of Synthesis

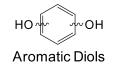
V70 Polymer

<u>Why</u> should people believe these molecules are safe?

We investigated prescriptive approaches



Keeping in mind reactants ≠ products


 $2 H_2 + O_2 \rightleftharpoons 2 H_2 O$

Tetramethyl Bisphenol F Diglycidyl Ether ER

≠

GreenScreen[®]

GreenScreen® Sodium

Group I Human				Group II and II* Human								Ecotox		Fate		Physical		
С	М	R	D	El	AT	ST	N	SnS	<u>SnR</u>	Ins	IrE	IM	AA	CA	Р	В	Rx	F
L	L	L	L	L	н	м	L	H	н	H	н	L	н	H	L	L	н	н

GreenScreen[®] Chlorine

Group I Human				Group II and II* Human							Ecotox		Fate		Physical			
С	М	R	D	E ¹	AT	ST	N	SnS	<u>SnR</u>	Ins	IrE	ІМ	AA	CA	Р	В	Rx	F
м	м	L	L	L	н	н	H	н	н	н	н	L	н	H	L	L	н	L

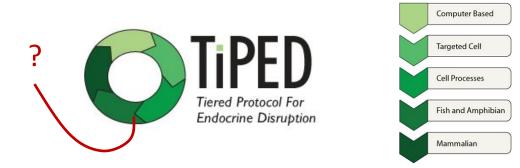

Group I Human				Group II and II* Human								Ecotox		Fate		Physical			
С	М	R	D	E	AT		ST		N	SnS*	SnR*	IrS	IrE	AA	CA	P	В	Rx	F
				-		single	repeated*	single	repeated*										
L	L	L	м	DG	L	L	М	DG	L	H	DG	L	L	н	H	1.8	٩Ĺ	L	L

Figure 1: GreenScreen[®] Hazard Ratings for TMBPF DGE Resin

Note: Hazard levels (Very High (vH), High (H), Moderate (M), Low (L), Very Low (vL)) in *italics* reflect estimated (modeled) values, authoritative B lists, screening lists, weak analogues, and lower confidence. Hazard levels in **BOLD** font are used with good quality data, authoritative A lists, or strong analogues. Group II Human Health endpoints differ from Group II* Human Health endpoints in that they have four hazard scores (i.e., vH, H, M, and L)

Tiered Protocol for Endocrine Disruption (TiPED)

Designing endocrine disruption out of the next generation of chemicals. Schug et al. Green Chem., 2013,15, 181-198

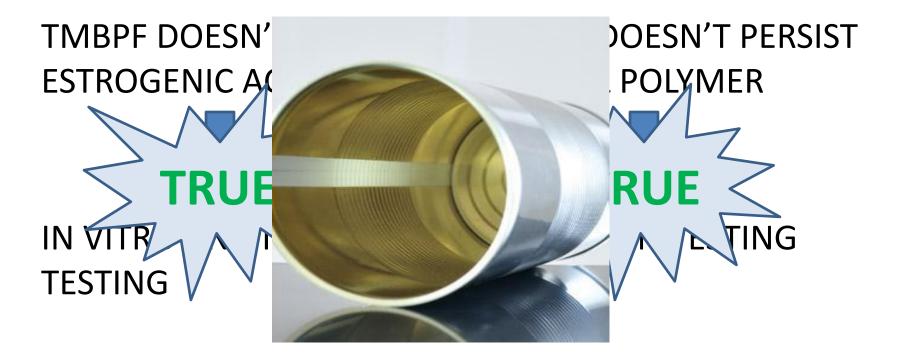
"While in silico and in vitro assays offer less costly starting points, in vivo assays are necessary to conclude that a chemical is unlikely to have EDC activity."

http://www.tipedinfo.com/tiped_tier/guiding-principles/

Organizations with whom Valspar openly shared data for comment, approval, or assistance (Does not necessarily imply endorsement, approval, or future activity)

The Food and Environment Research Agency

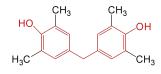
Regulatory Authorizations Received

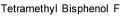


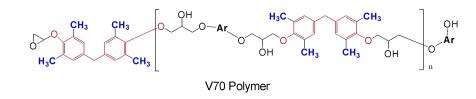
Toxicity Data Summary

	Xylenols	Aromatic Diols	TMBPF	TMBPFDGE monomer/res	V70 Migrants
Migration (exposure)	Not found – volatile < LOQ = 0.05 ppb	Not found – hydrolytically unstable and volatile < LOQ = 0.05 ppb	Not found in food simulant migrants (< LOQ = 0.05 ppb)	8 ppb	< 50 ppm
Estrogenicity		Genomic Array (α,β)	SAR Transactivaton (2) Redistribution Genomic Array (α,β) EScreen Uterotrophic Immature Pubertal Estrogen mimic	SAR Transactivation Redistribution Genomic Array (α,β) Read-across Genomic Array Estrogen mimic	EScreen
Androgen		Genomic array	Genomic Array Redistribution Transactivation Hershberger	Genomic Array Redistribution Transactivation	
Thyroid			Immature Pubertal	SAR Read across	
Enzyme			Aromatase Steroidogenesis	SAR Read across	
Toxicity	Literature SAR		From other in vivo	Acute 28-Day	
Genotoxicity			SAR	Ames/GS multi- formats Lymphoma In vivo-Comet/MN	
EcoTox		Literature SAR	Biodegradability Kow Solubility Hydrolysis/pH Dissociation Aquatic toxicity- fish, daphnia, algae	Biodegradability Kow Solubility Hydrolysis/pH Dissociation Aquatic toxicity-fish, daphnia, algae	
Other			Microsomal metabolism AhR activation	Microsomal metabolism In vitro – skin Eye hazard LLNA AhR activation	

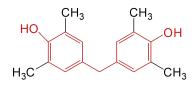
HYPOTHESES



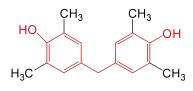

WHAT ABOUT THE POLYMERIC COATING?


Approaches to EA and migration assessment

- Monomer TMBPF
 - Estrogen activity



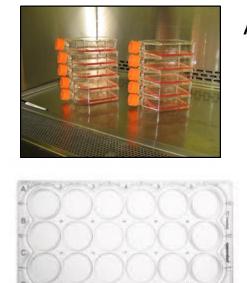
- Guidance testing
 Mammary gland biology
- Migration quantification from final polymer
- Polymeric coating
 - Estrogen activity
 - Collaborative testing
 - Migrates profile

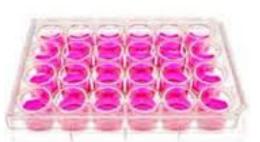

TMBPF testing

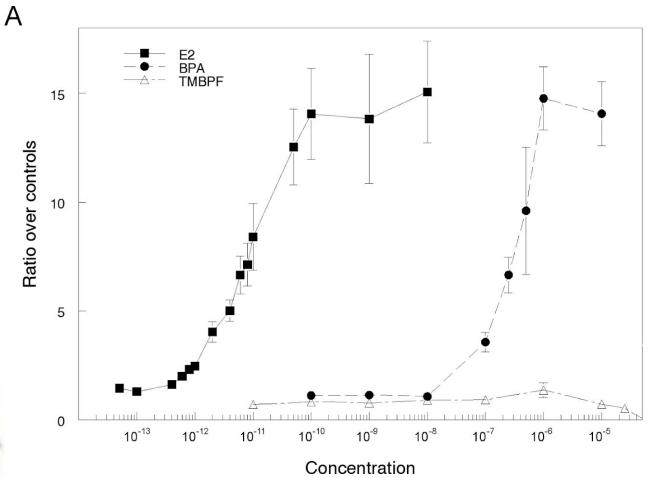
Tetramethyl Bisphenol F

- Estrogen receptor binding assays (OECD)
 - Agonist and antagonist
- High Content Microscopy Prolactin Array (Texas A&M and Baylor)
- Cell proliferation E-SCREEN assay (Tufts)
- Immature rat uterotrophic assay (EPA+ mammary gland)
- Juvenile male and female pubertal assay (EPA+ mammary gland)

TMBPF testing

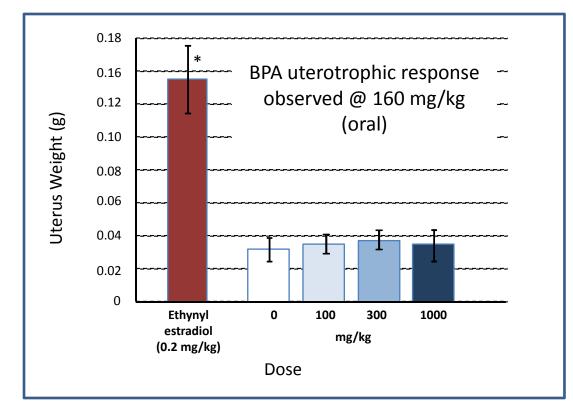

Tetramethyl Bisphenol F


- Estrogen receptor binding assays (OECD)
 Agonist and antagonist
- Chromatin transcription-factor binding arrays for prolactin (Texas A&M and Baylor)
- Cell proliferation E-SCREEN assay (Tufts)
- Immature rat uterotrophic assay (EPA+ mammary gland)
- Juvenile male and female pubertal assay (EPA+ mammary gland)


E-SCREEN

- Estrogen-sensitive MCF7 cells
 - Day 1: known number of cells
 - Day 5: count final number of cells
- Positive control: 17-beta E2 10^{-14} to 10^{-8} M
- Positive EA chemical: BPA 10⁻¹⁰ to 10⁻⁵ M
- TMPBF: 10⁻¹¹ to 10⁻⁵ M
- ENDPOINT: INCREASED CELL PROLIFERATION

E-SCREEN

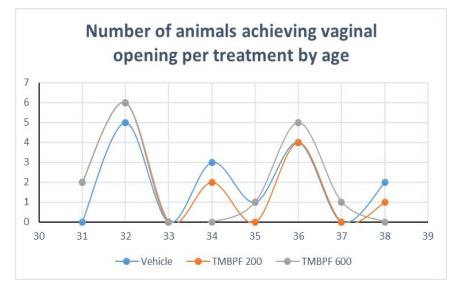

E-SCREEN

TMBPF DID NOT INCREASE MCF7 CELL PROLIFERATION

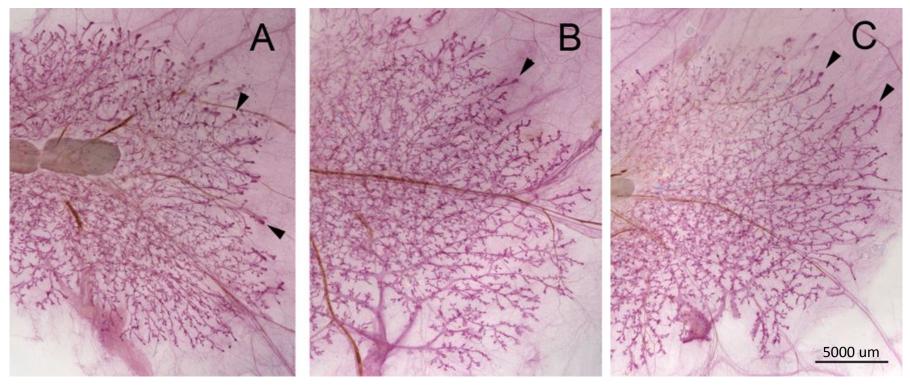
Uterotrophic assay (+)

- Immature female rats
- 3-days daily oral (gavage) treatment
- Positive control: Estradiol (0.2 mg/kg bw)
- TMBPF: 0, 100, 300, 1000 mg/kg bw
- ENDPOINT: INCREASED UTERINE WEIGHT
- NEW ENDPOINT: MAMMARY GLAND DEVELOPMENT

Uterotrophic assay (+)


NORMAL MAMMARY GLAND HISTOPATHOLOGY

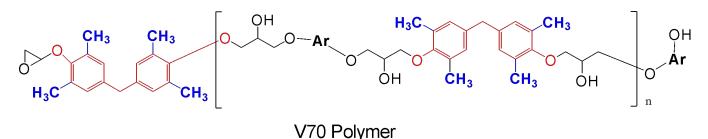
Uterotrophic assay (+)


TMBPF DID NOT INCREASE UTERINE WEIGHT AND DID NOT ALTER FEMALE MAMMARY GLAND DEVELOPMENT

- Juvenile male and female rats
- Daily oral (gavage) treatment: 20 and 30 days females and males, respectively
- TMBPF: 0, 200, 600 mg/kg bw
- ENDPOINTS: VAGINAL OPENING, PREPUTIAL SEPARATION, ESTROUS CYCLE, REPRODUCTIVE ORGANS WEIGHT AND HISTOPATHOLOGY
- NEW ENDPOING: MAMMARY GLAND DEVELOPMENT

- No delay in preputial separation; mean ages (days)
 - Control: 47.27
 - 200 mg: 48.20
 - 600 mg: 48.67
- No differences in vaginal opening; mean ages (days)
 - Control: 34.47
 - 200 mg: 33.60
 - 600 mg: 33.73
- No differences in estrous cycle
- No histological findings in male or female reproductive organs

 No changes in mammary gland developmental pattern or histology

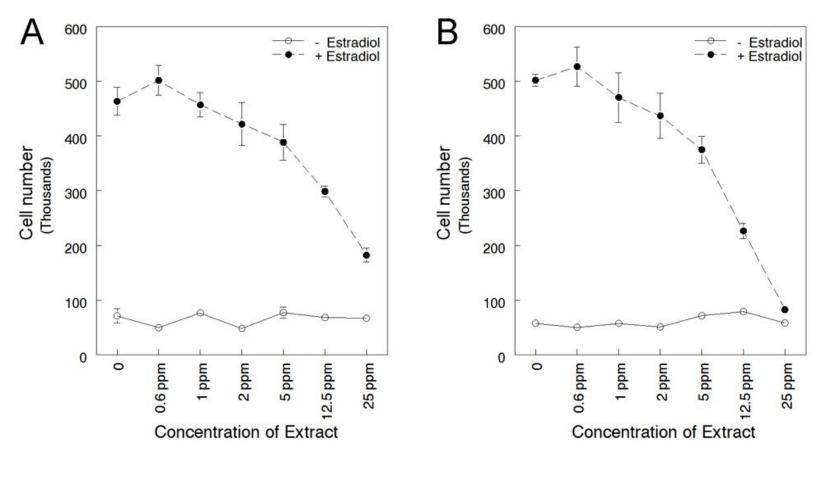

Untreated

TMBPF 200

TMBPF 600

TMBPF DID NOT ALTER: PUBERTY IN MALE AND FEMALE RATS FEMALE MAMMARY GLAND DEVELOPMENT

Polymeric coating testing approach

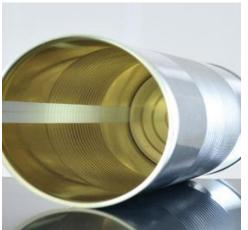


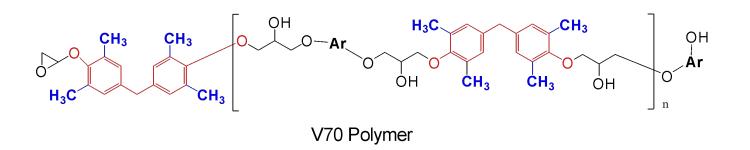
- Migrates from coating extracted using food simulants
 - Acidic foods: 3% acetic acid (FDA)
 - Fatty foods: 50% ethanol (FDA)

Cell proliferation E-SCREEN assay (Tufts)

Extracted migrates E-SCREEN

3% Acetic acid


50% Ethanol

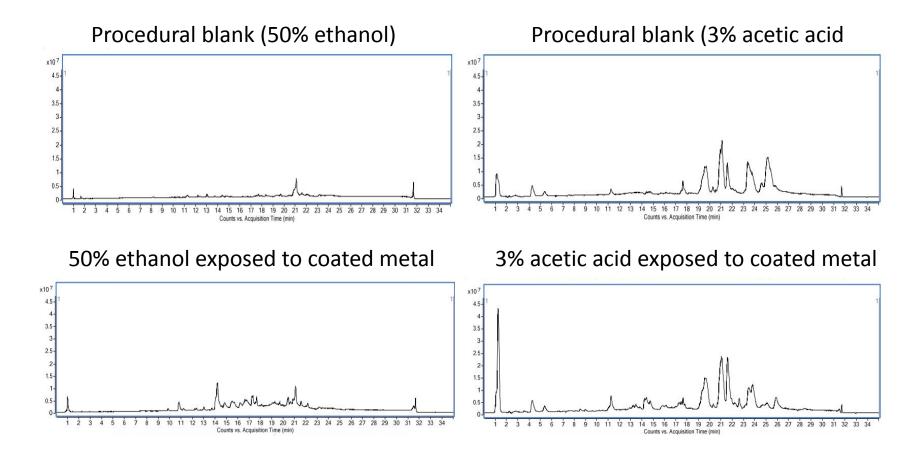

Extracted migrates E-SCREEN

POLYMERIC COATING EXTRACTS DID NOT INCREASE PROLIFERATION OF ESTROGEN-SENSITIVE MCF7 CELLS

Analysis of extracts

- TMBPF quantification (extracts spiked with TMBPF)
- Chromatographic analysis of migrates from both simulants (FERA)

TMBPF migration quantification


Fera No.	Sample description	TMBPF concentration
S15-092945	3% acetic acid	< LOD (LOD = 0.2 μg/6 dm ² = 0.2 ppb)
S15-092946	50% ethanol	< LOD (LOD = $0.2 \ \mu g/6 \ dm^2 = 0.2$ ppb)
S15-092947	1.78mL of 5 part per thousand oligomer migrant (NIAS) concentrate in DMSO derived from 3% acetic acid/water (8.9 mg/1.78 mL)	<rl (rl="0.06" 6="" dm<sup="" µg="">2 = 0.06 ppb)</rl>
S15-092948	1.28 mL of 5 part per thousand oligomet migrant (NIAS) concentrate in DMSO derived from 50% ethanol/water (6.5 mg/1.28 mL)	< LOD (LOD = 0.01 µg/6 dm ² = 0.01 ppb)

LOD: limit of detection, calculated as three times the signal to noise of the TMBPF response in an over spiked aliquot of the simulant

RL: reporting limit or limit of quantification, calculated as three times the response in the procedural blank. NIAS: no intentionally added substances that migrated from polymeric-coated metal the presence of food simulants.

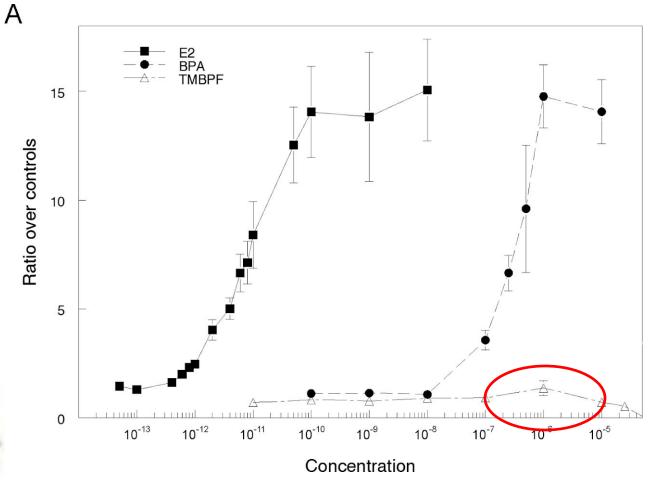
Liquid chromatography and tandem mass spectrometry (LC-MS/MS)

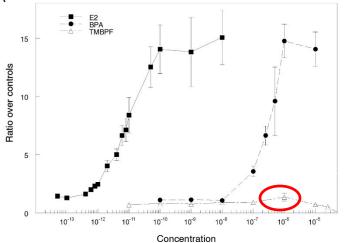
No-Intentionally Added Substances (NIAS) in food simulants

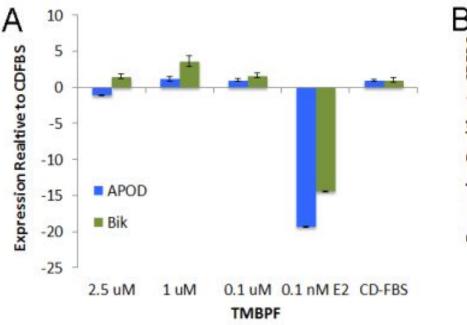
Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS)

What we learned

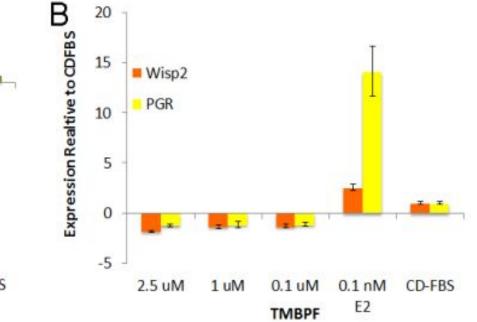
- Safety requires *evidence of absence*
- Absence of evidence has little value
- Evidence of absence requires thinking partners who are not like you
- Hire critics and <u>ask them to prove you are wrong</u>
- Get your IP protections in place and <u>freely share</u> your toxicity data
- Be <u>patient</u> and be ready for conflict
- Prepare to <u>change your mind</u>

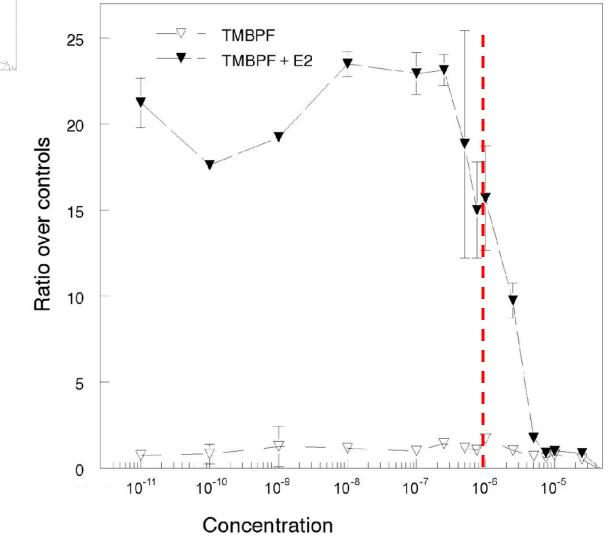

GROWTH INNOVATION SOLUTIONS SUCCESS

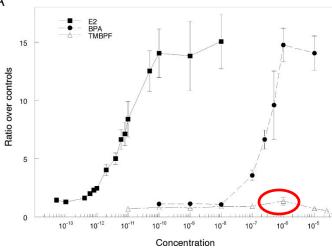



http://www.valsparpackaging.com/valpure/item/our-materials/#om

E-SCREEN

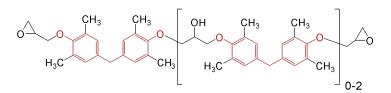






We need the bisphenol out of the last synthesis step

 Table III.
 Summary of analysis and assay results for ER (read-across target) and read-across sources TMBPFDGE, BADGE, NOGE and oligo-BFDGE.


Green = Negative experimental result, Red = Positive experimental result

- RA = Read-across (only applies to "target" substance, **ER**)
- ND = no data available

Numbers indicate relative potency in the standard Ames assay (Table IV)

			ER	TMBPFDGE	BADGE	NOGE	oligo-
In vitro			ER	TIVIDPFDGE	BADGE	NUGE	BFDGE
MLA	-59	culture				ND	
MLA	+59	culture				ND	
TA-98	-59	plate					
TA-100	-59	plate					
TA-1535	-59	plate					
TA-1537	-59	plate					
TA-98	+59	plate					
TA-100	+59	plate	3.9	4.7	25.0		
TA-1535	+59	plate	33.6	35.5	117.8		
TA-1537	+59	plate					
Mutagenicity	CAESAR	Model	Model	Model	Model	Model	Model
TA-98	-59	mpf	RA		ND	ND	ND
TA-100	-59	mpf	RA		ND	ND	ND
TA-1535	-59	mpf	RA		ND	ND	ND
TA-1537	-59	mpf	RA		ND	ND	ND
TA-98	+59	mpf	RA		ND	ND	ND
TA-100	+59	mpf	RA		ND	ND	ND
TA-1535	+59	mpf	RA		ND	ND	ND
TA-1537	+59	mpf	RA		ND	ND	ND
GS GADD45	-59	culture	RA		ND	ND	ND
GS GADD45	+59	culture	RA		ND	ND	ND
In vivo							
Micronucleus			Oral	Oral	Oral	ND	Oral
Comet Assay or other DNA damage			Oral	Oral	Oral	Oral	Oral
Chromosomal aberration			RA	ND	Oral	Oral	Oral
Transgenic Mouse			RA	ND	ND	Oral	
Carcinogenicity			RA	ND		ND	Dermal
Carcinogenicity			Model	Model	Model	Model	Model
Carcinogenicity			QSAR	QSAR	QSAR	QSAR	QSAR
Repeated Oral Dose (mg/kg-bw/d)			28-56Day NOAEL = 100 LOAEL = 300 Repro/Dev NOAEL = 300	ND	Chronic NOAEL = 15 Subchronic NOAEL = 50; LOAEL = 250	ND	90-Day NOAEL = 250 (limit dose) 14-day NOAEL = 300; LOAEL = 1000

Read-Across Analysis for ER

Tetramethyl Bisphenol F Diglycidyl Ether ER