Greener Solutions: Improving performance of mycelium-based leather

Audrey Smith, Kathy Tran, Katie Deeg, Oana Stoica, Zach Gima MycoWorks Team

Fall 2017

Leather is desirable but problematic

Source: blueskypapers.com

Introduction

Inspiration

Proposed Strategies

Performance

Leather production harms humans and the environment

Introduction

Inspiration

Proposed Strategies

Performance Haz

MycoWorks presents a promising alternative, but needs more:

Strength

Flexibility

Durability

Source: MycoWorks

Inspiratio

Proposed Strategies

Performance Hazard

There are a few restrictions:

Introduction

Source: MycoWorks

ormance

There are a few restrictions:

Scaleable Sustainable Biodegradeable

Source: MycoWorks

Source: MycoWorks

Source: vecteezy.com

Introduction

Inspiratio

Proposed Strategies

Performance

Outline

- Approaches and inspiration
- Cross-linking strategies
- Moisture barrier strategy
- Technical performance
- Hazard assessment
- Recommendations and next steps

Source: MycoWorks

e Hazar

Inspiratio

Proposed Strategie

Approaches and Inspiration

What does the MycoWorks material consist of? 9

Ganoderma lucidum

Source: Wikipedia

Source: Haneef et al. (2017)

Chitin

Introduction

Inspiration

Proposed Strategies

Performance

Approach #1: incorporate cross-linking like in animal leather

Approach #2: introduce a moisture barrier

MycoWorks currently uses PEG successfully as a plasticizer, but it leaches out when the material is washed with water.

Baselines for guiding strategy development

Technical performance: baseline is the MycoWorks MVP Hazards: baselines are animal leather and vegan leather

Source: MycoWorks

Source: http://michelleayres.com

Source: Green Mountain Outlook

Inspiration

Proposed Strategies

Performance

Cross-linking Strategies

Natural cross-linker: genipin

Source: https://www.thesynergycompany.com/

Source: Sigma-Aldrich, Butler et al. (2003)

Inspiration

Proposed Strategies

Performance

Genipin directly cross-links chitosan fibers

BID enzymatically driven crosslinking

Introduction
Inspiration
Proposed Strategies
Performance
Hazards

Image: I

Tyrosinase catalyzed cross-linking

Cross-linking between fibers via quinones

Composite-based material: chitin nanowhiskers 20

Filler: Chitin nanowhiskers

Crosslinker: Suberic acid

Catalyst: 2-iodophenylboronic acid (IPBA)

Sources: Araki (2012) Al Zoubi (2008)

Inspiration

Proposed Strategies

Performance

Composite-based material: chitin nanowhiskers ²¹

Filler: Chitin nanowhiskers

Crosslinker: Suberic acid

Catalyst: 2-iodophenylboronic acid (IPBA)

Sources: Araki (2012) Al Zoubi (2008)

Inspiration

Proposed Strategies

Performance

Hazards

Composite-based material: chitin nanowhiskers ²²

Filler: Chitin nanowhiskers

Crosslinker: Suberic acid

Catalyst: 2-iodophenylboronic acid (IPBA)

Sources: Araki (2012) Al Zoubi (2008)

Inspiration

Proposed Strategies

Performance

Hazards

Nanowhiskers crosslink fibers

Moisture Barrier Strategy

Water-insoluble proteins can be extracted from ²⁵ agricultural byproducts

Source: Pixabay.com

Water-insoluble proteins can be extracted from ²⁶ agricultural byproducts

Source: Pixabay.com

Wheat gluten

Fish myofibrillar protein

Proposed Strategies

Performance

Hazards

Corn zein forms water-resistant films

Source: Global Protein Products, Inc., globalprotein.com

biodegradablegoods.com.au

Introduction

Inspiration

Proposed Strategies

Performance

Hazards

Corn zein films are demonstrated moisture barriers

Material	Water vapor permeability (g•mm/m²•h•kPa at 25 °C and o/90% relative humidity gradient)
Corn zein film*	0.06
Corn zein film* + tung oil coating	0.005
Cellophane (a hydrophilic biopolymer)	0.3
LDPE film	0.003
*Without PEG	Source: Gennadios A. Protein-Based Films and Coatings. CRC Press (2002)

Proposed Strategies

We propose applying a corn zein coating to the MycoWorks material

29

Technical Performance

Strength: ultimate tensile strength

Source: Giphy.com

Introduction

Inspiration

Proposed Strategies

Performance Haza

Flexibility: bending endurance

Source: StockShots

Introduction

Inspiration

Proposed Strategies

Performance Hazard

Flexibility: bending endurance

Introduction

Inspiration

Proposed Strategies

Performance Hazard

Technical performance framework

Categories	0	XXX XX		x	
Strength	Unknown	<= 0.5X	Similar to MycoWorks	>=2X	
Water Resistance	Unknown	Lower	Similar to MycoWorks	Higher	
Flexibility	Unknown	Lower	Similar to MycoWorks	Higher	
Longevity Through Washes	Unknown	Lower	Similar to MycoWorks	Higher	
Handfeel	Unknown	Worse	Similar to MycoWorks	Better	
Discoloration	Unknown	Negative color change	-	Positive or no color change	
Post-processing	Unknown	No	-	Yes	
Process Complexity	Unknown	High	Medium	Low	
Material Availability	Unknown	Few commercially available materials (<10%) or hard to synthesyze	Some synthesis required	Most materials commercially available (>90%)	
Thermal Energy Requirement	Thermal Energy Requirement Unknown		Medium	Room temp	
Innovation Requirement	Additional research needed	Major hurdles anticipated	Minor hurdles anticipated	Process optimization only	

Performance

Feasibility

Technical performance across strategies

				Technical	Performance		Technical Feasibility								
	Strategy		Physical	Properties		Cosmeti	c Side Effects			Innovation					
		Strength	Water Resistance	Flexibility	Longevity Through Washes	Handfeel	Discoloration	Post- processing	Process Complexity	Material Availability	Thermal Energy Requirement				
xisting ategies	MycoWorks MVP	хх	хх	хх	хх	хх	ххх	N/A	N/A	N/A	N/A	N/A			
	Animal leather	х	x	х	x	x	N/A	N/A	N/A	N/A	N/A	N/A			
Sti	Vegan leather	хх	Х	о	x	ххх	N/A	N/A	N/A	N/A	N/A	N/A			
- 0	Genipin	x	x	хх	0	0	ххх	x	хх	x	х	x			
osec egie:	Tyrosinase	0	0	0	0	0	0	x	хх	хх	x	xxx			
Prop	Nanowhiskers	x	0	хх	0	о	0	x	ххх	xx	x	хх			
	Corn zein + PEG	хх	x	x	0	0	0	x	хх	x	хх	xxx			

Proposed Strategies

Technical feasibility

Hazards Assessment

Hazards assessment framework

	Green Screen (v.1.2) Hazard Profile Summary Table																			
								Hun	nan Health Effe	cts					Eco	otox. Fate		ate	P-Chem	
					Group			Group II								U	(L	(
	Chemical	CAS #	Carcinogenic (C)	Mutagenic/ Genotoxic (M)	Reproductive (R)	(Neuro) Developmental (D)	Endocrine Activity (E)	Acute Mammalian Tox (AT)	Systemic Tox/Organ Effects (incl. Immune System) (ST)	Neurotoxicity (N)	Skin Sensitization (SnS)	Respiratory Sensitization (SnR)	Irritation/ Corrosivity Skin (IrS)	Irritation/ Corrosivity Eye (IrE)	Acute Aquatic Toxicity (AA)	Chronic Aquati Toxicity (CA)	Persistence (P	Bioaccumulatic (B)	Reactivity (Rx	Flammability (F
	Chromium(III) Sulfate	13825-86-0	0	Н	0	0	0	L	М	0	Н	М	Н	М	М	М	0	0	М	M
Animal	Sulfuric acid	7664-93-9	Н	L	L	М	0	Н	Н	0	L	Н	Н	н	М	н	н	L	М	M
leather*	Acetic acid	64-19-7	L	L	0	L	0	М	L	L	М	М	Н	н	М	L	L	L	М	М
	Sodium bicarbonate	144-55-8	L	L	М	L	М	Н	М	0	0	L	M	М	L	L	Н	0	М	L

Green Screen (v.1.2) Hazard Profile Summary Table									
Strategy	Chronic Human Health Endpoints	Acute Human Health Endpoints	Ecotoxicity	Fate	Physical				
Animal Leather	н	н	М	Н	М				

Introduction	Inspiration	Proposed Strategies	Performance Ha	azards

Hazards assessment summary across strategies

Green Screen (v.1.2) Hazard Profile Summary Table											
Chemical/ Strategy	Chronic Human Health	Acute Human Health	Ecotoxicity	Fate	Physical						
Animal Leather	н	н	М	Н	М						
Genipin	М	М	0	L	L						
Tyrosinase	L	М	0	0	L						
Nanowhiskers	М	Н	L	0	L						
Corn zein	L	Ĺ	0	Ĺ	Ĺ						

Proposed Strategies

Recommended strategies: genipin + corn zein 40

Source: MycoWorks

Next steps: adding a cross-linker - genipin

 Understand the impact to material at each step in the process

- Optimize the process for cross-linking
 - De-colorization strategy

Source: Gorczyca et al. (2013)

Next steps: adding a moisture barrier - corn zein

- Test the durability through washing
- Determine the effect of temperature and humidity on performance
- Optimize corn zein:PEG ratio

Corn zein film: macroscopic (left) and microscopic (right)

Source: Bisharat et al. (2018)

