### Greener Solutions x L'Oreal x DTSC Non-petroleum Based Alternatives for Nail Polish Formulations



Fall 2022

Andrea Tineo | Aldo Munoz | Dominic Pina | Monique Miller | Raina Kasera

## Meet the team

Andrea Tineo

### Aldo Munoz





MPH Environmental Health Sciences, Industrial Hygiene MPH Environmental Health Sciences, Industrial Hygiene **Dominic Pina** 



MPH Environmental Health Sciences, Ergonomics MPH Environmental Health Sciences, Industrial Hygiene

**Monique Miller** 

Raina Kasera



BS Chemical Biology, Conc. Computational Chemistry, Minor Public Policy

## **Presentation Overview**

Background

- The Problem
- Challenge Statement
- Worker Exposure
- Health Performance of Existing Methods

### Performance Criteria

Component Functions

• Target Properties of ideal nail polish

#### Our Strategies

 Zein-based formulation

• Water-Based Solvents

 Drop-In Plasticizer Alternative

#### Recommendations

- Challenge Statement
- Worker Exposure
- Health Performance of Existing Methods

### Background

Background

4

### Nail salon workers are routinely exposed to toxic chemicals

NEWS ANALYSIS | ECONOMY & LABOR

ENVIRONMENTAL HEALTH AND SAFETY

risk

### Nail Salon Workers Face Respiratory Illness and Cancer Risks, Study Shows

The Current

Perfect Nails, Poisoned Workers

The New Hork Times

5

## Nail salon workers exposed to high levels of toxic chemicals, new study reveals

Colorado nail salon workers face chronic air pollution, elevated cancer

Toxic products in California nail salons under renewed scrutiny

Toxic chemicals threaten beauty care workforce with adverse health effects

## The Challenge: Safer, non-petroleum based nail polish formulations

#### **Partners**

L'Oréal & the Department of Toxic Substances Control (DTSC)

### Goals

- Identify a range of non-petroleum based alternatives to existing solvents that achieve comparable technical performance
- Consider solvents, plasticizers, and film-formers that can be synthesized without petroleum products, or safer alternatives



ĽORÉAL



### There are 3 key components of nail polish formulation

| Component   | Function in formula                                            | Current chemicals                                                                                                                                                                                                                |  |  |
|-------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Film-former | Binds components together<br>Main component in formulation     | - Nitrocellulose                                                                                                                                                                                                                 |  |  |
| Solvent     | Dissolves solutes<br>Lowers the viscosity of final formulation | - <mark>Toluene</mark><br>- Butyl acetate<br>- Ethyl acetate                                                                                                                                                                     |  |  |
| Plasticizer | Increase flexibility by softening the polymer<br>(film former) | <ul> <li>Dibutyl phthalate</li> <li>Triphenyl Phosphate (TPhP)</li> <li>Di(ethylhexyl) terephthalate (DEHT)</li> <li>Diisononyl hexahydrophthalate (DINCH)</li> <li>Triethyl citrate</li> <li>Acetyl tributyl citrate</li> </ul> |  |  |

**Red** = current primary bad actors

## Nail salon workers experience adverse health outcomes from workplace exposures



## Primary bad actors are hazardous to human health



## Primary bad actors are hazardous to human health



### Secondary bad actors are "safer" than primary bad actors



## **Performance Criteria**

## Technical specifications for nail polish formulation



- Good adhesion
- Good shine properties •
- Good mechanical properties
- Easy removal with • non-acetone removers

| Property     | Goal / Metric                                       |
|--------------|-----------------------------------------------------|
| Film forming | At room temperature                                 |
| Hardness     | Persoz Hardness between 50-70<br>oscillations       |
| рН           | 4-8                                                 |
| Adhesion     | > 4 for ASTM standard cross hatch tape test         |
| Gloss        | > 60 GU (gloss units) on Byk<br>Gardner gloss meter |
|              |                                                     |

Source: L'Oreal

## Performance criteria for each component

| Component   | Function in formula                                                                                     | Max amount in % weight of<br>component in formulation | Target Properties                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Film-former | Binds components<br>together when dried and<br>thickens formulation<br>Main component in<br>formulation | 50%                                                   | - Forms a film at room<br>temperature (between 68-74<br>degrees Fahrenheit)                                      |
| Solvent     | Dissolves solutes<br>Lowers the viscosity of<br>final formulation                                       | 90%                                                   | <ul> <li>Low volatility (low vapor pressure)</li> <li>Ability to dissolve film-former and plasticizer</li> </ul> |
| Plasticizer | Increase flexibility by softening the polymer (film-former)                                             | 15%                                                   | - Molecular weight based on<br>compatibility with film-former                                                    |

#### All components should also be non-petroleum based and vegan

Sources: L'Oreal, Development of a nail polish with minerals as caring ingredients

Our Strategies

Strategy 1 Strategy 2

## **Our Strategies**

### 3-tiered approach to building out safer formulations



16

## Our 3 strategies target each major component of nail polish formulation

Building Out a Formulation from Zein as a **Film-former** 

2 Water as a **Solvent** Alternative to Toluene

3

Bio-based **Plasticizer** Drop-in Replacements



# **Strategy 1** Building Out a Formulation from Zein as a Film-former

### Inspiration: Zein emulates properties of the natural resin shellac



Chemical structure of shellac.



Zein monomeric unit.

19



Laccifer lacca (aka Tachardia lacca).



## Zein is hydrophobic, vegan, and biodegradable



Zein monomeric unit.



Zein films from different processes.

#### **Chemical Properties**

- High proportion of non-polar amino acids (leucine, alanine, proline)
- Hydrophobic (poor water solubility, alcohol-soluble)
- Film forms through hydrogen and limited disulfide bonds between zein chains

#### Additional Properties of Zein

- Zein films are brittle need plasticizers to make them soft and "permanently flexible"
- Low water vapor permeability
- High fatty acid-binding capacity
- Vegan
- Biodegradable

Natural Polymers: Volume 1: Chapter 10 Anderson et al., 2022

Our Strategies

## Plasticizer was selected based on compatibility with zein and existing formulations

### **Existing Formulations**

Acetyl tributyl citrate is already used in ~7% of nail polish formulations as a plasticizer

### Zein Compatibility

(Shi. K et al., 2012) found zein mixed with 10% tributyl citrate can achieve an ideal level of flexibility and toughness in high humidity and water





Acetyl Tributyl Citrate

## Solvent selection was driven by the GSK Solvent Selection Guide and zein extraction methods

| Classification | Solvent Name             | CAS Number | Composite<br>Colour‡ | Boiling Point<br>(°C) | Incineration | Recycling | Biotreatment | VOC<br>Emissions | Aquatic<br>Impact | Air Impact | Health<br>Hazard | Exposure<br>potential | Flammability<br>& Explosion | Reactivity &<br>Stability | Life Cycle<br>Analysis† |
|----------------|--------------------------|------------|----------------------|-----------------------|--------------|-----------|--------------|------------------|-------------------|------------|------------------|-----------------------|-----------------------------|---------------------------|-------------------------|
|                | 1-Heptanol               | 111-70-6   |                      | 178                   | 9            | 8         | 10           | 9                | 8                 | 4          | 10               | 7                     | 9                           | 10                        |                         |
|                | Ethylene glycol          | 107-21-1   |                      | 197                   | 4            | 5         | 5            | 10               | 10                | 8          | 7                | 10                    | 10                          | 10                        | 9                       |
|                | 1-Octanol                | 111-87-5   |                      | 195                   | 9            | 7         | 8            | 10               | 5                 | 4          | 7                | 10                    | 9                           | 10                        |                         |
|                | 1-Butanol                | 71-36-3    |                      | 118                   | 6            | 7         | 5            | 8                | 9                 | 3          | 7                | 7                     | 8                           | 9                         | 5                       |
| Alcohols       | 1-Propanol               | 71-23-8    |                      | 97                    | 5            | 3         | 3            | 6                | 10                | 4          | 10               | 7                     | 8                           | 10                        | 7                       |
| Alcohols       | Ethanol                  | 64-17-5    |                      | 78                    | 5            | 5         | 3            | 4                | 9                 | 5          | 10               | 8                     | 6                           | 10                        |                         |
|                | 2-Propanol               | 67-63-0    |                      | 82                    | 5            | 5         | 3            | 5                | 8                 | 7          | 10               | 6                     | 6                           | 8                         | 4                       |
|                | t-Butanol                | 75-65-0    |                      | 82                    | 5            | 5         | 3            | 5                | 9                 | 7          | 7                | 5                     | 6                           | 10                        | 8                       |
|                | IMS (ethanol, denatured) | 64-17-5    |                      | 78                    | 5            | 5         | 3            | 5                | 9                 | 5          | 4                | 7                     | 6                           | 10                        |                         |
|                | Methanol                 | 67-56-1    |                      | 65                    | 4            | 7         | 3            | 3                | 10                | 7          | 4                | 6                     | 5                           | 10                        | 9                       |

- (Li et al., 2012) zein has been shown to dissolve well in 70% ethanol and commercially extracted using 88% isopropanol
- Both solvents can be produced in a bio-based manner

## Zein has low toxicity endpoints



## Acetyl tributyl citrate shows similar hazard endpoints to primary bad actor plasticizers



## Ethanol and isopropanol are less hazardous than current "safe" solvents



#### **Current Solvents**



## Sample zein-based formulation shows promising technical performance with room for improvement



#### **Future Directions**

#### Improving current formulation

- Solvent mixtures (ethanol & isopropanol)
- Antioxidants (carotenoids, vitamin E/C, ...)
- Blue-colored chemical to neutralize yellow

#### Developing other formulations

- Different solubility guides (Pfizer, Sanofi, ...)
- Solubility parameters (Hansen, Hildebrand, ...)
- Other hydrophobic solvents (non-alcohols)

# **Strategy 2** Water as a Solvent Alternative to Toluene

Background Performance Criteria Our Strategies Strategy 1 **Strategy 2** Strategy 3 Recommendations

## Strategy 2: Water as a solvent alternative

| Component          | Function in formula                                                                                     | Max amount in %<br>weight of component<br>in formulation | Current Chemicals                                                                                                                                                                          |  |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Film-former        | Binds components together<br>when dried and thickens<br>formulation<br>Main component in<br>formulation | 50%                                                      | - Nitrocellulose<br>50%                                                                                                                                                                    |  |  |  |
| Solvent            | Dissolves solutes<br>Lowers the viscosity of final<br>formulation                                       | 90%                                                      | - <mark>Toluene</mark><br>- Butyl acetate<br>- Ethyl acetate                                                                                                                               |  |  |  |
| Plasticizer        | Increase flexibility byPlasticizersoftening the polymer<br>(film-former)                                |                                                          | - Dibutyl phthalate<br>- Triphenyl Phosphate (TPhP)<br>- Di(ethylhexyl) terephthalate (DEHT)<br>- Diisononyl hexahydrophthalate (DINCH)<br>- Triethyl citrate<br>- Acetyl tributyl citrate |  |  |  |
| Red = current prir | mary bad actors                                                                                         |                                                          |                                                                                                                                                                                            |  |  |  |
| Background         | Performance Criteria Our Strategie                                                                      | s Strategy 1 Sti                                         | rategy 2 Strategy 3 Recommendations                                                                                                                                                        |  |  |  |

## Water has no known hazards

|          |               | Carcinogenicity/<br>Mutagenicity | Develop/<br>Reproduct Tox | Endocrine<br>Activity | Skin/Eye<br>Irritation                 | Acute/Systemic<br>Toxicity | Neurotoxicity                      |            |
|----------|---------------|----------------------------------|---------------------------|-----------------------|----------------------------------------|----------------------------|------------------------------------|------------|
|          | Toluene       | L                                | н                         | H-M                   | н                                      | М                          | M-L                                |            |
|          | Butyl Acetate | L                                | M-L                       | DG                    | н                                      | М                          | M-L                                |            |
|          | Ethyl Acetate | L                                | M-L                       | DG                    | н                                      | М                          | М                                  |            |
|          | Water         | L                                | L                         | L                     | L                                      | L                          | L                                  |            |
|          | Data Gap      | /ery Low Hazard                  | Low Haz                   |                       | lium Hazard<br>ırces: IARC, Prop-65, E | High Hazard                | Very High<br>GHS, Pharos, EWG Skir |            |
| Backgrou | nd Performan  | ce Criteria                      | Our Strategies            | s Strategy 1          | Strategy                               | 2 Strategy                 | 3 Recomr                           | mendations |

### Many water-based formulations use acrylates copolymers as film-formers

| Brand                                           | Film-former                                                   | Plasticizer                           | Full Ingredient List                                                                                                                                                                                                                                                   |
|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acquarella                                      | Acrylates Copolymer                                           | N/A                                   | Aqua, Styrene Acrylates Copolymer, Acrylates Copolymer. Pigments                                                                                                                                                                                                       |
| Honeybee<br>Gardens<br>No Nasties<br>(peelable) | Acrylates Copolymer                                           | N/A                                   | Water (aqua), acrylates copolymer. Pigments                                                                                                                                                                                                                            |
| Sophi<br>Piggy Paint                            | Acrylates Copolymers                                          | Melia Azadirachta<br>(Neem Oil)       | Aqua, Acrylates Copolymers, Melia Azadirachta (Neem Oil). Pigments.                                                                                                                                                                                                    |
| Keeki Pure<br>and Simple                        | Acrylates Copolymers                                          | glycol ethers<br>(unspecified)        | Water, acrylate copolymer emulsion, glycol ethers. Pigments.                                                                                                                                                                                                           |
| Rosajou                                         | PEG-150/Decyl<br>Alcohol/SDMI<br>Copolymer<br>Polyurethane-61 | PPG-2 Methyl Ether<br>Polyurethane-61 | Water, Polyurethane-61, Silica, PPG-2 Methyl Ether, Phenoxyethanol, Sodium<br>Dehydroacetate, Propylene Glycol, PEG-150/Decyl Alcohol/SDMI Copolymer,<br>PPG-30 Butyl Ether, Ethylhexyglycerin, Bentonite, Ammonium Hydroxide,<br>Silica Dimethyl Silylate, Tocopherol |
| Miniso                                          | Polyurethane-1                                                | propylene glycol                      | Polyurethane-1, water, propylene glycol, stearalkonium bentonite                                                                                                                                                                                                       |
|                                                 |                                                               |                                       | Source: My List of Water Based, Peelable & Odourless Non-Toxic Nail Polish                                                                                                                                                                                             |

Strategy 2

Strategy 3

## Syntran 5620 CG is a film-former developed for water-based nail enamels

### Styrene/acrylates/ ammonium methacrylate copolymers are made up of 3 components

Syntran 5620 CG\* is a specific version of this copolymer:

- 42% solids
- Miscible with water
- pH of 7-8
- Flammable at >120°C

\*Syntran 5620 CG is an updated version of Syntran PC 5620 without the methylisothiazolinone (MIT) preservative





## Water-based formulations are slower drying than their solvent counterparts



150 µm film on glass; Conditions: 70C, 55% RH



Wet film applied on Leneta cards (black portion), rubbed with gauze at 1min intervals, average of 3 gloss readings; Conditions: 71C, 53% RH.

ZSCHIMMER & SCHWARZ

Background

### Acrylates copolymers have concerning health endpoints

|                                            | Styrene                                                                                                                                      | Methacrylate ester                                                              | Ammonium methacrylate<br>copolymers |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------|
| Acute Exposure                             | <ul> <li>Mucous membrane &amp; Eye<br/>irritant</li> <li>Gastrointestinal effects</li> </ul>                                                 | - Skin, eye, and nose irritant                                                  | - Skin and eye irritant             |
| Chronic<br>Exposure                        | <ul> <li>Central nervous system</li> <li>Hearing loss</li> <li>Peripheral neuropathy</li> </ul>                                              | <ul><li>Development of skin allergy</li><li>Itching</li><li>Skin rash</li></ul> | - Skin and eye irritant             |
| Reproductive/<br>Developmental<br>Toxicity | <ul> <li>No increase in developmental effects</li> <li>Increase in spontaneous abortions</li> <li>Decrease in sperm concentration</li> </ul> | Data Gap                                                                        | Data Gap                            |
| Carcinogenicity                            | - Group 2B                                                                                                                                   | - Not classifiable to cause cancer                                              | - Not classifiable to cause cancer  |
|                                            |                                                                                                                                              |                                                                                 | References: IARC, EPA, ASTDR, ECHA  |
| Background                                 | Performance Criteria Our Strategies                                                                                                          | Strategy 1 Strategy 2 Strat                                                     | tegy 3 Recommendations 33           |

### Various natural film-formers also dissolve well in water



## Final considerations for water-Based formulations

### Pros

- Eliminates bad actor chemicals
- Odorless
- Non-flammable

### Solutions

- Instructions to apply 2-3 thin coats
- Allow 15 mins to dry between coats
- Let cure for 6+ hours overnight
- Antibacterial agents

#### Cons

- Dries top-down
- Long dry time
- Absorbs water
- Bacterial growth

### **Future Directions**

- Less toxic film-formers
- Solubility of plasticizers with proposed Syntran 5620 CG
- Properties of proposed natural water-soluble film-former
- Applicability of water-based properties of cosmetics to nails

# **Strategy 3** Bio-based Plasticizer Drop-in Replacements

36
# Strategy 3: Drop-in plasticizer alternatives

| Component         | Function in formula                                                                                     | Max amount in %<br>weight of component<br>in formulation | Current Chemicals                                                                                                                                                                                                                |  |
|-------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Film-former       | Binds components together<br>when dried and thickens<br>formulation<br>Main component in<br>formulation | 50%                                                      | - Nitrocellulose                                                                                                                                                                                                                 |  |
| Solvent           | Dissolves solutes<br>Lowers the viscosity of final<br>formulation                                       | 90%                                                      | - <mark>Toluene</mark><br>- Butyl acetate<br>- Ethyl acetate                                                                                                                                                                     |  |
| Plasticizer       | Increase flexibility by<br>softening the polymer<br>(film-former)                                       | 15%                                                      | <ul> <li>Dibutyl phthalate</li> <li>Triphenyl Phosphate (TPhP)</li> <li>Di(ethylhexyl) terephthalate (DEHT)</li> <li>Diisononyl hexahydrophthalate (DINCH)</li> <li>Triethyl citrate</li> <li>Acetyl tributyl citrate</li> </ul> |  |
| ed = current prim | hary bad actors                                                                                         |                                                          |                                                                                                                                                                                                                                  |  |
| Background        | Performance Criteria Our Strategie                                                                      | s Strategy 1 St                                          | rategy 2 Strategy 3 Recommendations                                                                                                                                                                                              |  |

### Many companies are developing alternative plasticizers to shift away from phthalates

#### Epoxidized oils (Vernonia Oils)



#### **Cross-linked polyesters**





Vernonia galamensis (Ironweed)

**Sulfonamides** 



Sources: Patents: FR2785531; 5,578,297; 5,882,636; US 8,187,576 B2

Background

Our Strategies

Strategy 2

Strategy 3

#### Natural carbonates are plasticizers that can be prepared in bio-based manners

Generic carbonates:

R<sub>1</sub>OCOOR<sub>2</sub>

Background

Where:

- $R_1$  and  $R_2$  are equivalent ٦.
- 2.  $R_1$  and  $R_2$  form an alkyl chain with 2 or 3 carbon atoms and one or more hydroxy or hydroxy( $C_1$ - $C_2$ )alkyl groups



### Glycerol carbonate has good plasticizing properties for nail polish

- Chemically stable
- Non-flammable (Flash Point >204°C)
- Water-soluble
- Biodegradable
- Low volatility (Boiling Point 110–115°C at 0.1 mmHg)
- High renewable content (76 - 100% depending on synthesis route)



# Glycerol carbonate has better plasticizing properties than the commercial plasticizer

#### Effect of the plasticizers on the Persoz hardness



#### Formulation

| Ingredient      | % Composition |
|-----------------|---------------|
| Solvents*       | 59.1          |
| Nitrocellulose  | 17.9          |
| Polyester resin | 13.3          |
| Plasticizer     | 9.9           |
|                 |               |

\*mixture of ethyl acetate, butyl acetate, and isopropanol

#### Results

- Moderate plasticizing effect for dilauryl carbonate and diisoamyl carbonate
- Glycerol carbonate had better plasticizing properties than the commercial plasticizer

Source: de Caro et al., 2019

### Glycerol carbonates can be synthesized in a variety of ways



### Glycerol carbonates interact strongly with nitrocellulose



Proposed arrangement of glycerol carbonate molecules within nitrocellulose chains.

- Hydrogen bonds between hydroxyl groups of glycerol carbonate and NO<sub>2</sub> groups of nitrocellulose
- Large and well-distributed free volume between nitrocellulose chains → high plasticizing effect
- Glycerol carbonate can be reduced below 10% to meet specifications of nail polish

de Caro et al., 2019

# The hazard assessment of plasticizer alternatives indicates notable data gaps



# Drop-in bio-based plasticizers show strong technical performance but lack information regarding health endpoints

#### **Technical Performance**

- Natural carbonates can be synthesized via multiple pathways
- Glycerol carbonate outperforms ATBC in terms of plasticizing effects

#### **Future Directions**

- Other glycerol esters (glycerol triacetate, glyceroltrioctanoate, glyceroltribenzoate, ...)
- Related classes to carbonates (diols, glycols, ...)
- Non-glycerol related substitutes (adipates, pentaerythrityltetrabenzoate, 2,2,4-trimethyl-1,3-pentanedioldisobutyrate, ...)

#### **Health Endpoints**

- ATBC outperforms glycerol carbonate
- Glycerol carbonate (GC)
  - Systemic toxicity
  - Acute Toxicity
- GC Data Gaps
  - Predictive tools suggests significant toxicity
  - Cramer Class III (ToxTree)

#### **Future Directions**

• Preference for ATBC as used in Strategy 1

Background Performance Criteria Our Strategies **Strategy 1** Strategy 2

## Recommendations

Background Performance Criteria Our Strategies Strategy 1

Strategy 2

Recommendations

46

# Comparison of proposed strategies

| Background                                         | Performance Criteria                                                                                                | Our Strategies Strategy                                                                                                                                                 | Strategy 2 Strategy                                                                                                                                                                        | 3 Recommendations                                                                                               |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Bio-based<br>drop-in<br>plasticizer<br>replacement | <ul> <li>Developed in in many ways</li> <li>Well-researched compatibility between formulation components</li> </ul> | <ul> <li>Many data gaps<br/>regarding health<br/>endpoints</li> </ul>                                                                                                   | • This method will<br>require additional<br>testing prior to use to<br>see interactions with<br>other compounds                                                                            | <ul> <li>How do we classify<br/>compounds that are<br/>both plasticizers and film<br/>formers?</li> </ul>       |
| Water as an<br>alternative<br>solvent              | <ul> <li>Easily removed</li> <li>Water = no toxic<br/>health endpoints</li> </ul>                                   | <ul> <li>Requires additive to<br/>increase hardness +<br/>reduce bacterial<br/>growth</li> <li>Slow dry time</li> <li>Difficult application<br/>instructions</li> </ul> | <ul> <li>Reduced need for<br/>hazard communication<br/>- safer for workers</li> <li>Inexpensive</li> <li>Soy-based remover</li> <li>Existing formulations<br/>already on market</li> </ul> | • What is the ability of the formulas to suspend the pigments? Do we need an additive?                          |
| Zein-based<br>formulation                          | <ul> <li>Hydrophobic</li> <li>Biodegradable</li> <li>Flexible<br/>formulation</li> </ul>                            | <ul> <li>Requires alcohol for<br/>removal</li> <li>Remains skin and eye<br/>irritant</li> </ul>                                                                         | <ul> <li>Includes safer solvent<br/>alternative current<br/>actors</li> <li>Zein has no known<br/>toxic endpoints</li> <li>New approach to bring<br/>to market</li> </ul>                  | <ul> <li>Is there an antioxidant<br/>that can be used with<br/>zein to prevent the color<br/>change?</li> </ul> |
|                                                    | Pros                                                                                                                | Cons                                                                                                                                                                    | Notes                                                                                                                                                                                      | Questions                                                                                                       |

### Final recommendation: further research on zein-based formulations

- → Zein-based formulation has potential to achieve similar results to Shellac
  - Inexpensive, Vegan, Bio-inspired
- → Water-based formulations may not achieve long-lasting results
  - Customer reviews report dissatisfaction
  - Additives must be considered
- → Consider alternative plasticizers in formulations
  - Many data gaps regarding potential plasticizer alternatives
  - L'Oreal and DTSC should explore alternatives to evaluate use

# All strategies eliminate bad actors. Zein-based formulation offers a new and inexpensive approach to create vegan, clean-beauty nail polishes.

48

# Thank you for joining us today

#### & a special thank you to our partners at L'Oreal and DTSC.



L'ORÉAL



## References

| 1.  | Frontiers   Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties (frontiersin.org)      |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2.  | §339. The Hazardous Substances List.                                                                                                |  |  |
| 3.  | https://www.google.com/url?q=https://www.sigmaaldrich.com/US/en/sds/aldrich/s345849&sa=D&source=editors&ust=166970943               |  |  |
|     | <u>2946212&amp;usg=AOvVaw0pEgunmdtH2AoMe1nHleim</u>                                                                                 |  |  |
| 4.  | https://patents.google.com/patent/US8187576B2/en                                                                                    |  |  |
| 5.  | https://www.yumpu.com/en/document/read/11935480/polymer-for-water-based-nail-polish-syntranr-pc-5620-cosmesiit                      |  |  |
| 6.  | FR2785531A1 - Nail varnish composition comprising a film-forming polymer, solvent and a fluorinated citric acid ester plasticizer - |  |  |
|     | Google Patents                                                                                                                      |  |  |
| 7.  | Zondlo Fiume. (2002). Final Report on the Safety Assessment of Acrylates Copolymer and 33 Related Cosmetic Ingredients.             |  |  |
|     | International Journal of Toxicology, 21(Supplement 3), 1–50. <u>https://doi.org/10.1080/10915810290169800</u>                       |  |  |
| 8.  | Zein as biodegradable material for effective delivery of alkaline phosphatase and substrates in biokits and biosensors -            |  |  |
|     | ScienceDirect                                                                                                                       |  |  |
| 9.  | Implications of Protein- and Peptide-Based Nanoparticles as Potential Vehicles for Anticancer Drugs - ScienceDirect                 |  |  |
| 10. | Enhanced enteric properties and stability of shellac films through composite salts formation                                        |  |  |
| 11. | What Is Shellac? Uses in the Beauty Industry and Environmental Concerns                                                             |  |  |
| 12. | Safety Assessment of Acetyl Trialkyl Citrates as Used in CosmeticsSafety Assessment of Acetyl Trialkyl Citrates as Used in          |  |  |
|     | Cosmetics                                                                                                                           |  |  |
| 13. | U.S. corn-based ethanol worse for the climate than gasoline. study finds                                                            |  |  |
| 14. | Improved Mechanical Property and Water Resistance of Zein Films by Plasticization with Tributyl Citrate                             |  |  |
| 15. | Zein: Structure, Production, Film Properties and Applications                                                                       |  |  |
|     |                                                                                                                                     |  |  |

# References (cont.)

- 1. <u>GSK Solvent Selection Guide.</u>
- 2. A one-step approach for esterification of zein with methanol
- 3. Zein from maize: product information.
- 4. <u>Understanding the Dissolution of α-Zein in Aqueous Ethanol and Acetic Acid Solutions</u>
- 5. Formulation And Characterization Of Natural Biodegradable Chewing Gum
- 6. <u>Development of New Method for Extraction of α-Zein from Corn Gluten Meal Using Different Solvents</u>
- 7. <u>Measurement and correlation of solubility of D-sorbitol in different solvents</u>
- 8. Ingredient Feature: Acetyl Tributyl Citrate
- 9. Johnson W Jr. Final report on the safety assessment of acetyl triethyl citrate, acetyl tributyl citrate, acetyl trihexyl citrate, and acetyl trioctyl citrate. Int J Toxicol. 2002;21 Suppl 2:1-17. doi: 10.1080/10915810290096504. PMID: 12396673.
- 10. CPSC Staff Statement on University of Cincinnati Report "Toxicity Review for Acetyl Tri-n-butyl Citrate (ATBC)
- 11. Improved Mechanical Property and Water Resistance of Zein Films by Plasticization with Tributyl Citrate
- 12. <u>Two fraction extraction of α-zein from DDGS and its characterization</u>
- 13. Sigma Aldrich Zein SDS
- 14. Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films
- 15. "Shellac" How Products Are Made Encyclopedia
- 16. Development of a nail polish with minerals as caring ingredients
- 17. Additives for water-based nail polish

51

# **References (cont.)**

- 1. Measurement of Sixty-Degree Specular Gloss
- 2. <u>Plasticizer of Natural Origin for Nail Polish</u>
- 3. <u>Phthalate free nail polish enamel composition</u>
- 4. Nail varnish composition comprising a crosslinked polyester
- 5. Cosmetic composition containing an epoxidized oil as plasticizer
- 6. Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties
- 7. <u>YIKES: Acrylates Copolymer in Beauty Products</u>
- 8. <u>Water-based nail-polish composition</u>
- 9. Polymer for water-based nail polish SYNTRAN® PC 5620
- 10. <u>My List of Water Based, Peelable & Odourless Non-Toxic Nail Polish</u>
- 11. Working the Nail Polish, Acquarella
- 12. <u>Green Science Alliance Has Developed Water Base 100% Nature Biomass Nail Polish, Nail Color Which Does Not Come</u> Off Even After Washing
- 13. Business Case for Acquarella.
- 14. PULLULAN BASED FILM FORMING COSMETIC COMPOSITIONS
- 15. Design of Sodium Alginate/Gelatin-Based Emulsion Film Fused with Polylactide Microparticles Charged with Plant Extract
- 16. Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions
- 17. <u>Ciclopirox Hydroxypropyl Chitosan (HPCH) Nail Lacquer: A Review of Its Use in Onychomycosis</u>
- 18. <u>DeWolf Chem: Film Former</u>

# **References (cont.)**

- 1. Sheen: REF. 707 PENDULUM HARDNESS ROCKER
- 2. <u>Two fraction extraction of α-zein from DDGS and its characterization</u>
- 3. How is gloss measured?, Rhopoint Instruments
- 4. Tools and techniques for solvent selection: green solvent selection guides
- 5. Gras Dossier, GENERALLY RECOGNIZED AS SAFE (GRAS) NOTIFICATION FOR BASIC METHACRYLATE COPOLYMER
- 6. <u>Summary of Classification and Labelling 2-Propenoic acid, 2-methyl-, ammonium salt (1:1), homopolymer</u>
- 7. Comp Tox Ammonium methacrylate
- 8. Methacrylate Esters Safe Handling Manual
- 9. US EPA, Methyl Methacrylate Hazard Summary
- 10. CDC, Health Effects of Styrene
- 11. US EPA, Styrene Hazard Summary
- 12. <u>European Commission, SCIENTIFIC COMMITTEE ON TOXICITY, ECOTOXICITY AND THE ENVIRONMENT (CSTEE)</u> Opinion on the toxicological characteristics and risks of certain citrates and adipates used as a substitute for phthalates as plasticisers in certain soft PVC products
- 13. <u>https://productcatalog.eastman.com/tds/ProdDatasheet.aspx?product=71071434&pn=Benzoflex+-+9-88+Plasticizer</u>
- 14. https://www.dow.com/content/dam/dcc/documents/en-us/productdatasheet/110/110-00616-01-dowanol-pnb-tds.pdf

53

## Appendix

Background Performance Criteria

a Our Strategies

Strategy 1

Strategy 2

54

## How hazard assessments were conducted

- Literature
  - IARC
  - IRIS
  - European Commission: Scientific Committee on Toxicity, Ecotoxicity and the Environment
  - EPA
  - Consumer Product Safety Commission
  - PubChem
  - Agency for Toxic Substances and Disease Registry (ATSDR)
  - U.S. Department of Health and Human Services
  - CDC
- Screening tools
  - Pharos

-

## Hazard Assessment Primary Bad Actors



# **Strategy 1: Alternative Solution Hazards**



#### Hazard Assessment of Film-formers in Existing Water-Based Formulations



# Water-based formulations with Syntran PC 5620 showed high film hardness



Sward-Type Hardness Rocker, 6 MIL film on glass; Conditions: 71C, 57% RH.

| WATER-BASED ACRYL<br>SYNTRAN <sup>®</sup> PC 5620<br>Formulation F91-141B                                                                                    | IC NAIL POLISH WITH                                                |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------|
|                                                                                                                                                              | <b>INCI</b> Designation                                            | Weight %        |
| Phase A<br>Syntran <sup>®</sup> PC 5620                                                                                                                      | Pending                                                            | 92.00           |
| Phase B                                                                                                                                                      |                                                                    |                 |
| Benzoflex 9-88<br>(Genovique)                                                                                                                                | Dipropylene glycol<br>dibenzoate                                   | 2.40            |
| Dowanol PnB                                                                                                                                                  | Propylene glycol n-<br>butyl ether                                 | 4.40            |
| Syntran <sup>®</sup> KL-219CG                                                                                                                                | Ammonium Acrylates<br>Copolymer                                    | 1.20            |
|                                                                                                                                                              | YIELD:                                                             | 100.00          |
| Procedure:<br>Add Syntran® PC 5620 to b<br>a separate vessel, premix Pl<br>add Phase B to Phase A with<br>and avoid aeration.<br>PROPERTIES: pH: 7.0-8.0; so | hase B with appropriate ag<br>h <u>constant agitation</u> . Stir f | itation. Slowly |

### Benzoflex 9-88 and Dowanol PnB can provide plasticizing properties



60

# Acrylates copolymer has high toxicity



# Strategy 2: Water-based Nail Polish Formulation



Background



#### Pros

Eliminates bad actor chemicals, Odorless, Non-flammable

#### Cons

Dries top-down, Long dry time, Absorbs water, Bacterial growth

#### Solution

Include application instructions to apply 2-3 thin coats and allow 15 mins to dry between coats, Let cure for 6+ hours overnight

Our Strategies

Strategy 1

#### Hazard Assessment of Plasticizers in Existing Water-Based Formulations



# **Other Plasticizers of Natural Origin**

**Our Strategies** 

#### **Plasticizer Properties**

- Remain in polish film
- Flash point > 30°C

Background

Phthalate-free nail polish enamel composition substitutions:

0 - - · CR

Performance Criteria

#### Carbonates

- Prepared by reaction of Dimethyl Carbonate (DMC)
- Glycerol carbonate

#### 2,2,4-trimethyl-1,3-pentanediol diisobutyrate



# **Current Plasticizer of Natural Origin**



# **Current Plasticizer of Natural Origin**

#### **Dimethyl Carbonate Synthesis**

#### **Dilauryl Carbonate**



- Dimethyl carbonate transesterification base catalysis
  - Green chem
  - Catalyst: potassium carbonate (K2CO3)
- Dmc
  - Non-toxic
  - Manufactured to a clean process
  - Replaces toxic and hazardous reagents
- Synthesis of diisoamyl, dilauryl & glycerol carbonates
  - Rxn of DMC with isoamyl alcohol, dodecanol, or lauryl alcohol, and glycerol

-

# **Ranking Solutions - In Progress**

|                                                 | Criteria 1 | Criteria 2 | Criteria 3 |
|-------------------------------------------------|------------|------------|------------|
| Zein-based<br>formulation                       |            |            |            |
| Water as an alternative solvent                 |            | *          |            |
| Bio-based drop-in<br>plasticizer<br>replacement |            |            |            |

## Additional references not in folders

- 1. Measurement of Sixty-Degree Specular Gloss
- 2. Plasticizer of Natural Origin for Nail Polish
- 3. Phthalate free nail polish enamel composition
- 4. Nail varnish composition comprising a crosslinked polyester
- 5. Cosmetic composition containing an epoxidized oil as plasticizer
- 6. Recent Progress in Synthesis of Glycerol Carbonate and Evaluation of Its Plasticizing Properties
- 7. <u>YIKES: Acrylates Copolymer in Beauty Products</u>
- 8. <u>Water-based nail-polish composition</u>
- 9. Polymer for water-based nail polish SYNTRAN® PC 5620
- 10. My List of Water Based, Peelable & Odourless Non-Toxic Nail Polish
- 11. Working the Nail Polish, Acquarella
- 12. <u>Green Science Alliance Has Developed Water Base 100% Nature Biomass Nail Polish, Nail Color Which Does Not Come Off</u> Even After Washing
- 13. Business Case for Acquarella.
- 14.
- 15.