# Energy Efficient Wastewater Treatment

Emily Gonthier & Jennifer Lawrence April 30, 2018



# Outline

- ReNUWIt
  - What is it?
  - Our Partnership through ReNUWIt
- Research
  - Municipal Wastewater Treatment 101
  - Anammox
  - Broader Impacts



### **Re-Inventing the Nation's Urban Water Infrastructure**

ReNUWIt is an interdisciplinary, multi-institution engineering research center. Our goal is to change the ways we manage urban water.



**Stanford University** 



New Mexico State University



U.C. Berkeley



**Colorado School of Mines** 



## ReNUWIt – REU Program



Summer 2015 – Emily joins the lab group as an REU, with Jennifer as her mentor

## ReNUWIt – REU Program



Summer 2015 – Emily joins the lab group as an REU, with Jennifer as her mentor Fall 2016 – Emily joins the lab group as a PhD student!





|                                                                                                                 | Pollutant | Parameter | Influent<br>Concentration | Treatment<br>Requirement |
|-----------------------------------------------------------------------------------------------------------------|-----------|-----------|---------------------------|--------------------------|
|                                                                                                                 |           |           |                           |                          |
|                                                                                                                 |           |           |                           |                          |
|                                                                                                                 |           |           |                           |                          |
|                                                                                                                 |           |           |                           |                          |
| 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 |           |           |                           |                          |
|                                                                                                                 |           |           |                           |                          |
|                                                                                                                 |           |           |                           |                          |
|                                                                                                                 |           |           |                           |                          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pollutant | Parameter | Influent<br>Concentration | Treatment<br>Requirement |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Solids    | TSS       | 100 – 350 mg/L            | 30 mg/L                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |                           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |                           |                          |
| and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |           |                           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |                           |                          |
| and the second se |           |           |                           |                          |



| Pollutant                          | Parameter | Influent<br>Concentration | Treatment<br>Requirement |
|------------------------------------|-----------|---------------------------|--------------------------|
| Solids                             | TSS       | 100 – 350 mg/L            | 30 mg/L                  |
| Oxygen-<br>demanding<br>substances | BOD       | 100 – 350 mg/L            | 30 mg/L                  |
|                                    |           |                           |                          |
|                                    |           |                           |                          |
|                                    |           |                           |                          |
|                                    |           |                           |                          |



| Pollutant                          | Parameter      | Influent<br>Concentration                   | Treatment<br>Requirement |
|------------------------------------|----------------|---------------------------------------------|--------------------------|
| Solids                             | TSS            | 100 – 350 mg/L                              | 30 mg/L                  |
| Oxygen-<br>demanding<br>substances | BOD            | 100 – 350 mg/L                              | 30 mg/L                  |
| Pathogens                          | Fecal Coliform | 10 <sup>5</sup> – 10 <sup>8</sup><br>CFU/mL | 500 CFU/mL               |
|                                    |                |                                             |                          |
|                                    |                |                                             |                          |
|                                    |                |                                             |                          |
|                                    |                |                                             |                          |



| Pollutant                          | Parameter      | Influent<br>Concentration                   | Treatment<br>Requirement |
|------------------------------------|----------------|---------------------------------------------|--------------------------|
| Solids                             | TSS            | 100 – 350 mg/L                              | 30 mg/L                  |
| Oxygen-<br>demanding<br>substances | BOD            | 100 – 350 mg/L                              | 30 mg/L                  |
| Pathogens                          | Fecal Coliform | 10 <sup>5</sup> – 10 <sup>8</sup><br>CFU/mL | 500 CFU/mL               |
| Nutrionto                          | Nitrogen       | 30 – 50 mg/L                                | varies                   |
| nothents                           | Phosphorus     | 20 – 40 mg/L                                | varies                   |
|                                    |                |                                             |                          |



| Pollutant                          | Parameter      | Influent<br>Concentration                   | Treatment<br>Requirement |
|------------------------------------|----------------|---------------------------------------------|--------------------------|
| Solids                             | TSS            | 100 – 350 mg/L                              | 30 mg/L                  |
| Oxygen-<br>demanding<br>substances | BOD            | 100 – 350 mg/L                              | 30 mg/L                  |
| Pathogens                          | Fecal Coliform | 10 <sup>5</sup> – 10 <sup>8</sup><br>CFU/mL | 500 CFU/mL               |
| Nutrionto                          | Nitrogen       | 30 – 50 mg/L                                | varies                   |
| nothents                           | Phosphorus     | 20 – 40 mg/L                                | varies                   |
| Additional chemicals               | -              | -                                           | -                        |



| Pollutant                          | Parameter      | Influent<br>Concentration                   | Treatment<br>Requirement |
|------------------------------------|----------------|---------------------------------------------|--------------------------|
| Solids                             | TSS            | 100 – 350 mg/L                              | 30 mg/L                  |
| Oxygen-<br>demanding<br>substances | BOD            | 100 – 350 mg/L                              | 30 mg/L                  |
| Pathogens                          | Fecal Coliform | 10 <sup>5</sup> – 10 <sup>8</sup><br>CFU/mL | 500 CFU/mL               |
| Nutrients                          | Nitrogen       | 30 – 50 mg/L                                | varies                   |
|                                    | Phosphorus     | 20 – 40 mg/L                                | varies                   |
| Additional chemicals               | -              | -                                           | -                        |





Conventional Nitrogen Removal

- Nitrification
- Denitrification



Conventional Nitrogen Removal

Nitrification

Denitrification

Anammox / Deammonification

- Partial nitritation
- Anaerobic ammonium oxidation (anammox)



## The Anammox Process

### Strengths

- Decreased aeration demands
  - 60% reduction in energy consumption
- Decreased organic carbon demands
  - 90% reduction in waste biomass
  - Reduction in CO<sub>2</sub> emissions
- Reduction in N<sub>2</sub>O emissions

## The Anammox Process

### Strengths

- Decreased aeration demands
  - 60% reduction in energy consumption
- Decreased organic carbon demands
  - 90% reduction in waste biomass
  - Reduction in CO<sub>2</sub> emissions
- Reduction in N<sub>2</sub>O emissions

#### Weaknesses

- Slow growth rate
  - Long start-up periods
- Sensitivity to reactor conditions
  - Instability
  - Periodic Failures
- Bacteria not yet isolated

# The Anammox Process

### Strengths

- Decreased aeration demands
  - 60% reduction in energy consumption
- Decreased organic carbon demands
  - 90% reduction in waste biomass
  - Reduction in CO<sub>2</sub> emissions

#### Weaknesses

- ► Slow growth rate
  - Long start-up periods
- Sensitivity to reactor conditions
  - Instability
  - Periodic Failures

Reduction in N<sub>2</sub>O emissions

Bacteria not yet isolated

**Research Goal:** Utilize insights from microbiology to understand and improve the functionality of the anammox process

## Laboratory-Scale Anammox Bioreactor



### **Operating Conditions**

- Influent:
  - Synthetic wastewater
  - ArCO<sub>2</sub>
- Reactor:
  - Volume: 1L
  - Temperature: 37°C
  - HRT: 12-48 hours
  - SRT: 50 days

## Laboratory-Scale Anammox Bioreactor



### **Operating Conditions**

- Influent:
  - Synthetic wastewater
  - ArCO<sub>2</sub>
- Reactor:
  - Volume: 1L
  - Temperature: 37°C
  - HRT: 12-48 hours
  - SRT: 50 days

### **Bioreactor Performance**



### **Bioreactor Performance**



## **Bioreactor Performance**



Time (days)

## Next Steps

- Verify hypotheses with batch experiments.
- Identify strategies to deal with carbon fluctuations at the wastewater treatment plant.

