Access our presentation at the following link:

<u>https://docs.google.com/presentation</u> /d/1acjw-rxlfochUQWsByiQybu3G1RsN fdH72K9rxh_YGY/edit?usp=sharing</u>

(The formatting changes if we convert to PPT)

From Dirty Laundry to a Cleaner Planet:

Exploring Eco-friendly Alternatives to Polyvinyl Alcohol (PVA) in Detergent Products

Tiffany Chen

Chemistry PhD Candidate

Crystal Cho

Environmental Health Sciences MPH Student

Our Team

Luke Elissiry

Chemistry PhD Candidate

Sophie Koh

Electrical Engineering PhD Student

Farah Sevareid

Global Health & Environment MPH Student

Overview

Final assessment, future plans, questions

Background

Sheets and packs are promising single-use, low-carbon-footprint, detergent deliverers

PVA is an industry standard material with unique properties

Background

Approac

Strategies

PVA provides the structure of detergent sheets

Images from ECOS manufacturing

Polyvinyl Alcohol

~9:1 n/m

Active Detergent Ingredients

Background

PVA films encapsulate detergent packs

- Heated to 150°C
- 47 MPa tensile strength
- 290% Elongation

Images from ECOS manufacturing

Background

Approac

Strategies

PVA poses health concerns

Bioaccumulation

PVA in breastmilk

Ragusa et al. 2022

Approac

Strategies

Does PVA pose environmental concerns?

PVA persists in the environment

Metric tons (mtu/yr) of PVA used and degraded in US wastewater

Background		

Approach: Replacing PVA

 $\mathbf{\mathbf{\mathcal{T}}}$

PVA's replacement must follow ••• ECOS' priorities

Leaping Bunny Certified \mathcal{A}

Hypoallergenic

100% Vegan

JJ

Plant-Powered

No Nasties

https://www.ecos.com/

Background

Approach

Strategies

Criteria for selecting PVA alternative

Technical Performance

- Soluble in all water temperatures
- Shelf stable for 2 years
- Compatible with existing detergent ingredients (5 < pH < 9)
- Appearance
 - Consideration for marketability

Health and Environment

- Non-toxic to human and aquatic life
 - Biodegradable
 Must pass OECD
 301B Requirements
 - 60% converted to CO₂ over 28 days
- Does not bioaccumulate

Manufacturing Compatibility

- TSCA Chemical List
- Readily available and accessible material
- Physical properties for manufacturing processes
 - Heat stability
 - Flexibility
 - Tensile strength

Approach

Strategies

Strategies 1) Polysaccharides 2) Proteins Considerations

IL

Strategy 1: Polysaccharide-based

1 Sodium Alginate

2 Carrageenan

3 Chitosan

4 Pullulan

Background

Strategies

Sodium Alginate Brown algae polymer used in food industry

Na⁺, K⁺, NH₄⁺, Ca²⁺, ...

Ingredients: Water, Soy Protein Concentrate, Sunflower Oil, Coconut Oil, 2% Or Less Of: Methylcellulose, Salt, Yeast Extract, Vegetal Casing (Sodium Alginate, Konjac Gum, Guar Gum), Cultured Dextrose,

Pros

- Very soluble; dissolves fully within 90 seconds
- NaOH is only chemical used in manufacturing
- Strong (25 75 MPa), especially with glycerol

Cons

- Unknown shelf life
- Low max concentration; 2% w/w solutions
- Insoluble with divalent ions (very hard water)

Considerations

- Kimica, etc. already produce various kinds/ grades of alginates
- Can be sourced sustainably
- Drop-in sheet replacement; elongation is concern for packs

https://impossiblefoods.com/products/sausage

https://www.floridamuseum.ufl.edu/earth-systems/blog/sargassum-seaweed-or-brown-algae/

Background

Approad

Strategies

Kappa- and Lambda- Carrageenan Red-algae polymers used in food industry

https://www.sciencedirect.com/science/article/pii/S2211926421004124

Kappa-Carrageenan Strong films (39 MPa) biodegrade in soil

- Stable up to 115°C
- Provides nutrient source for algae when degraded in ocean

Kappa-Carrageenan

- Insoluble in cold water
 - Cannot heat-seal

Lambda-Carrageenan

Improves flexibility

Lambda-Carrageenan

temperatures

Water soluble all water

• Does not form films on its own

Considerations

- Packs: Patented water-soluble Carrageenan film, Carraphane developed at German company, Brabender
- Sheets: potentially use a Kappa-Lambda hybrid

https://www.brabender.com/en/water-soluble-films-made-from-carraphane/

Background

Approac

Pros

Cons

Strategies

Chitosan

Amine-containing polymer from crustaceans & fungi

Photos from Margret, et al. 2017

Background

Pros

- Strong (20 320 MPa)
- Manufacturing only requires acids/bases and mild conditions

Cazón1 & Vázquez, 2020

• Elongation up to 120%

- Only soluble in slightly acidic media (pH < 6.5)
 - Acid controls film properties
- Soluble form is positively charged
- Not a thermoplastic; can be combined with one

Considerations

- Sourcing from fungi is expensive (5x) relative to crustacean waste-stream
- Cargill (US) & KitoZyme (EU) produce fungal-based chitosan for food, alcohol, and biomedical applications
- Adding glycerol leads to ↑ elongation & ↓ tensile strength

Approa

Strategies

Pullulan

Polymer produced from Aureobasidium pullulans

Ingredients: pullulan, menthol, sucralose, flavor, potassium ac 80, copper gluconate, glyceryl oleate, carrageenan, methyl sali thymol, menthyl succinate, ceratonia siliqua (carob) gum, gluco

Pros

- Readily dissolvable in hot and cold water
- Flexible
- Stable up to 250°C
- Biodegradable
- Consumable; non-toxic

Cons

- Low elongation at break (11%)
- Low tensile strength (1.7 MPa)

Considerations

- Expensive (high production charges compared to petrochemicals)
- Compatible with sheets if strengthened with a plasticizer

https://www.sciencephoto.com/media/799900/view/aureobasidium-pullulans-hyphae-and-spores-sem

https://www.listerine.com/on-the-go-oral-health/listerine-pocketpaks-cool-mint

https://doi.org/10.1111/1750-3841.12400

Background

Approac

Strategies

Cellulose Polysaccharide from plants

Pros

- Renewable and abundant
- Highly customizable
- Non-toxic to humans and environment
- Biodegradable

https://en.wikipedia.org/wiki/Cellulose

Cons

- Brittle
- Low tensile strength (22.4 MPa) and elongation (13.4%)
- Gels at high temp

Considerations

- Vegan and can be derived from waste sources
- Widely available and affordable
- Compatible with sheets and packs

https://logosltd.ru/print/en/node/177/catalog/tovar/62

Background

Approac

Strategies

Strategy 1: Polysaccharide Hazards

	Group I Human Endpoints			Group	Group II and Group II* Endpoints			Fate	Physical Hazard
Common Name or Trade Name	Carcinogenicity	Developmental and Reproductive	Endocrine	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory	Aquatic Toxicity	Persistence	Reactivity, Flammability
	Mutagenicity	Toxicity	Activity			Irritation/ Sensitization	Acute/Chronic	Bioaccumulation	Other Pchem Traits
Polyvinyl Alcohol	L	L	DG	L	L	L	Н*	M*	L
Sodium Alginate	L	L	L	L	L	L	L*	vL	vL
Carrageenan	L	L	L	L	L	L	vL	L	L
Chitosan	L	L	L	L	L	L	L*	L	DG
Pullulan	L	L	L	L	L	L	L	vL	vL
Cellulose	L	L	L	L	L	M+	L	L	L
italicized: low conj	*mixed literatu	nixed literature ⁺ not a consumer ha			gradient: reason assumption of sa	able _{data}	DG very vL	L M H vH high	
						Strategies			

Strategy 1: Polysaccharide Performance

	Solubility (temp, pH)	Tensile Strength (MPa)	Flexibility Commercial Availability		Packs, Sheets, or Both
Polyvinyl Alcohol	Cold & hot, pH 5-9	47 (film)	\checkmark	Yes (powder, film)	Both
Sodium Alginate	Cold & hot, pH > 4	25 – 75		Yes (powder)	Both
Carrageenan	Cold & hot, pH 6-10	39.3		Yes (powder <i>, film</i>)	Both*
Chitosan	Cold & hot, pH < 6.5	20 – 320		Yes (powder, film)	Packs
Pullulan	Cold & hot, pH 3-8	1.7		Yes (powder)	Sheets
Cellulose	Cold & hot, pH 2-13	4.5 - 22.4	~	Yes (powder, film)	Both

italicized: potential company partner

*marketing aesthetic considerations

Approach	Strategies	

Strategies

IL

Polysaccharides
 Proteins
 Considerations

Strategy 2: Protein-based

2 Soy Protein

3 Pea Protein

Background

Approad

Strategies

Brewer's Spent Grain (BSG) Protein Byproduct of brewing industry

https://www.miterro.com/products/beer-waste-wat er-soluble-film-sample

Background

Pros

- Upcycling
- Can be hydrolyzed to adjust water solubility
- Stable for >300 min at 140° C and pH 6-12
- Biodegradable in soil and water
- Can form into a film with plasticizer

Cons

- Protein degradation during malting and extraction
- Brown color
- Low tensile strength (1.6 MPa) and elongation (60%)
- Not listed on TSCA Chemical List

Considerations

- Available from EverPro (powder) and MiTerro (film)
- Suitable for both sheets and packs

Approac

Strategies

https://truenutrition.com/products/soy-protein-isolate https://www.iherb.com/pr/now-foods-sports-soy-pro tein-isolate-pure-unflavored-2-lbs-907-g

Soy Protein ⁵⁰ Derived from soybeans

soyprotein soyprotein soyprotein soyprotein

Soy protein films on paper. Image from Zhao et al. (2016)

Pros

- Comparable water solubility to PVA at 20C
- Consumable, non-toxic for amounts in this application
- Flexible films biodegradable in wastewater treatment sludge

Cons

- Common allergen, may cause skin sensitization or asthma
- Needs chemical treatment for cold-water solubility
- Only stable up to 80C before onset of coagulation

Considerations

- Readily available commercially
- Could be used for both sheets and packs

Hypoallergenic

Background

Approa

Strategies

Pea Protein

- Consumable; non-toxic
- High thermal stability (190-200 °C)
- Moderate tensile strength and good elongation (200%)
- Biodegradable in soil and water

https://www.packworld.com/news/sustainability/article/21796972/world s-first-edible-dissolvable-packaging-made-from-pea-protein https://morro.earth/material/morro-soluble-film/

Not on TSCA Chemical List

Considerations

- Available from Xampla's Morro materials (soluble film)
- Could be used for both packs and sheets

Background

Approa

Pros

Cons

Strategies

Strategy 2: Protein Hazards

	Grou	Group I Human Endpoints			Group II and Group II* Endpoints			Fate	Physical Hazard	
Common Name or Trade Name	Carcinogenicity	Developmental and	Endocrine	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory	Aquatic Toxicity	Persistence	Reactivity, Flammability	
	Mutagenicity	Reproductive Toxicity	Activity			Irritation/ Sensitization	Acute/Chronic	Bioaccumulation	Other Pchem Traits	
Polyvinyl Alcohol	L	L	DG	L	L	L	H*	M*	L	
Brewer's Spent Grain Protein	L	L	L	L	L	L	L	vL	L	
Soy Protein	L	L	M^+	L	L	н	L	L	L	
Pea Protein	L	L	L	L	L	L	L	L	L	
italicized: low confidence *		*mixed literatu	d literature ⁺ not a consumer ha		azard gradient: reasona assumption of sa		able ^{da} Ifety	ata DG very ap low vL	L M H vH very high	
Background					Strategies					

Strategy 2: Protein Performance

	Solubility (temp, pH)	Tensile Strength (MPa)	Flexibility	Commercial Availability	Packs, Sheets, or Both
Polyvinyl Alcohol	Cold & hot, pH 5-9	47 (film)	\checkmark	Yes (powder, film)	Both
BSG Protein	Cold & hot, pH 6-12	1.6	~	Yes (powder, film)	Both*
Soy Protein	Cold & hot, pH 3-8.5	2.3		Yes (powder)	Both
Pea Protein	Cold & hot, pH 6-12	7.0		Yes (powder <i>, film</i>)	Both

italicized: potential company partner

*marketing aesthetic considerations

	Strategies	

Strategies

IL

Polysaccharides
 Proteins
 Considerations

Additives can be used with polysaccharides or proteins Incorporated to improve functionality of the detergent sheets and/or packs with respect to:

Background

Approacl

Strategies

Plasticizers increase flexibility of polymer films

Plasticizers to consider:

Benefits of these additives:

Approac

Strategies

Reducing hygroscopicity improves stability

Sugar-free sweeteners that improve hard-candy lifetime:

Strategies

Additive Hazards

	Gro		roup I Human Endpo	ints	Group	II and Group II* En	dpoints	Ecotoxicity	Fate	Physical Hazard	
	Common Name or Trade Name	Carcinogenicity	, Developmental and	Endocrine	Systemic Toxicity	Neurotoxicity	Skin, Eye, Respiratory	Aquatic Toxicity	Persistence Bioaccumulation	Reactivity, Flammability	
		Mutagenicity	Toxicity	Activity			Sensitization	, leater en onie	bloaccumulation	Other Pchem Traits	
	Sorbitol	L	vL	L	vL	L	M+	L	L	vL; M	
	Glycerol	L	L	L	L	L	L	vL	L	vL; H	
S	Erythritol	L	L	L	L	L	M+	L	vL	vL	
aducer	Mannitol	vL	vL	L	vL	M^{+}	L	L	L	vL, M	
Re	Isomalt	L	L	L	L	L	M^+	DG	L	L	
	italicized: low confidence		*mixed literat	ure ⁺ n	ot a consumer l	nazard	gradient: reaso assumption of	onable safety _{gap}	DG very low vL	L M H vH very	
				pproach		Strategies			Conclusion		

Plasticizers

Hygroscopicity

Conclusion

7.

PVA Alternative Comparison

	Solubility (temp, pH)	Tensile Strength (MPa)	gth Flexibility		ercial bility	Packs, Sheets, or Both
Polyvinyl Alcohol	Cold & hot, pH 5-9	47 (film)		Yes (powd	ler, film)	Both
Sodium Alginate	Cold & hot, pH > 4	25 – 75		Yes (po	wder)	Both
Carrageenan	Cold & hot, pH 6-10	39.3		Yes (powo	ler, film)	Both*
Chitosan	Cold & hot, pH < 6.5	20 - 320		Yes (powd	ler, film)	Packs
Pullulan	Cold & hot, pH 3-8	1.7		Yes (po	wder)	Sheets
Cellulose	Cold & hot, pH 2-13	4.5 - 22.4		Yes (powd	ler, film)	Both
BSG Protein	Cold & hot, pH 6-12	1.6		Yes (powd	ler, film)	Both*
Soy Protein	Cold & hot, pH 3-8.5	2.3		Yes (po	wder)	Both
Pea Protein	Cold & hot, pH 6-12	7.0		Yes (powo	Yes (powder, <i>film</i>)	
			italicized: potential com	pany partner	*marketi	ng aesthetic consideratior
			Strategies			Conclusion

Background

Approac

Strategies

Only experimentation can answer remaining questions

Film Variables: concentration, polymer molecular weight, counterion, synthetic modification, additives

Packs:

Low Temp Heat Sealing Chi et al. 2023

Sheet Variables: composition of ingredients, drying time and temperature

Conclusion

Form-Fill-Seal vs. Premade Pouch Machine

vikingmasek.com/packaging-machines/

Background

Approacl

trategies

Acknowledgements

ECOS Team

Jenna Arkin (Chief Innovation Officer) Ryan Hood (R&D Director) James Davis (Process Chemist)

Greener Solutions Instructors

Dr. Meg Schwarzman Dr. Megan Arnett Dr. Billy Hart-Cooper

Approac

Strategies

Thanks!

Do you have a laundry list of questions?

Any stains of curiosity about PVA replacements?

Let's launder the details!

I'm ready for a sudsy discussion.

Feel free to fabricate your queries!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, **Microsoft** and **Adobe** and infographics & images by **Freepik**