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Introduction
Background, approach, and inspirations

Strategy 1: Biopolymer Films
Polymers from natural sources as a moisture barrier

Strategy 2: Chemical Additives 
Crosslinkers to improve biopolymer properties 

Strategy 3: Physical Additives
Nanoclays and nanofibers to reinforce biopolymers

Recommendations
Final assessment, limitations, and future trends

Questions and Discussion6



Method Products

Increasing dilution and moisture barrier requirements

Introduction Biopolymer Films
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Paper-based Packaging
Properties

✓ Structural integrity

✓ Low cost

✓ Recyclability, biodegradability

☓ Poor moisture barrier

Barrier properties compensated by polyolefins
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The Bad Actors: PFAS and Polyolefins

Soaking in indicates lack of moisture 
or grease barrier.

Spreading indicates the presence of 
a barrier, but possibly not fluorinated.

Beading indicates the presence of a 
very oleophobic barrier, such as 
PFAS. 

Image from 
https://www.researchgate.net/publication/339230341_Forever_chemicals_in
_the_food_aisle_PFAS_content_of_UK_supermarket_and_takeaway_food_
packaging 

PFAS as a oil barrier: 
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The Bad Actors: PFAS and Polyolefins

Low cost, accessible, good 
moisture barrier, good sealant, 
printability

Not biodegradable or recyclable 
when applied on paper, persistent 
in the environment

Polypropylene Printer Paper: 
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Product Considerations

Laundry Powders
Detergents + 
Concentrates

Soaps + 
Dilute Liquids 

Laundry powders can cake and 
draw in moisture. This can make 
films brittle.

Films should prevent moisture 
coming into the package.

Concentrated liquids can dissolve 
films, but barrier issues can be 
solved by the product 
composition.

Films should keep liquid 
contained and not dissolve in 
solution.

Dilute liquids can dissolve moisture 
barrier films and need a very strong 
moisture barrier.

Films should keep liquid contained 
and not dissolve in solution.

Increasing dilution and moisture barrier requirements
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Criteria

Improved Moisture Barrier Low Environmental Hazard Reduced Health Impacts

Low water vapor 
permeability (WVP), high 

water contact angle

Renewably sourced, 
biodegradable, low aquatic 

toxicity, low persistence

Non-irritating, non-carcinogenic or 
mutagenic, low repro/dev. toxicity, 

no endocrine disruption
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Inspiration for Biopolymer Cross-linking Strategy

Inspired by interwoven waterproof ant rants 
and their innovative use of chitin 

Sources of Chitin

Insects
cuticle, ovipositors, 

beetle cocoon

Crustaceans
crab shell, 

shrimp shell

Squids
ommastrephes pen, 
logilo stomach wall

Fungi
muco rouxi, 

aspergillis nidulans

Image from https://www.pnas.org/content/pnas/108/19/7669.full.pdf 

Note: This is not analogous to biopolymer crosslinking, it is only a metaphor

Chitosan is the second most abundant biopolymer in the world! 
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Vulcanized Rubber Crosslinking

Vulcanization uses sulfur to crosslink rubber, achieving increased tensile 
strength and elasticity among other properties.
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Proposed Strategies

1: Biopolymer 
Films

2: Chemical Additives:
“Cross-linkers” 

3: Physical Additives:
“Nanofillers”

● Polymers derived from 
natural sources

○ Chitosan
○ Pectin
○ Gelatin

● Crosslinking film to improve 
barrier & mechanical 
properties with:

○ Genipin
○ Ferulic Acid

● Reinforcing film’s barrier & 
mechanical properties with:

○ Nanoclays
■ Montmorillonite 

(MMT) 
○ Fibers 

■ Cellulose 
Nanocrystals
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Biopolymers

Endless Combinations

Biopolymers

Non-toxic, 
flexible

Bio-
compatible

Bio-
degradable

Biopolymers are polymers obtained from natural sources, either 
entirely biosynthesized by living organisms or chemically synthesized 
from biological material. 

Because of the large variety and ability to mix 
biopolymers, there are many physical behaviors to 
design for certain functionalities.

Safe for Consumption
Chitosan, alginate, and pectin are natural polysaccharides 
that have been used for years as food-grade gelling agents,  
thickening agents, and stabilizers.

Crosslinking Opportunities
Biopolymers being able to crosslink with other composites allow them to 
be used as a matrix for a film or coating. 
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Selected biopolymers for film formulation 

Introduction Technical Performance Health and Environmental Performance

Chitin / Chitosan 
(Polysaccharide)

Pectin (Polysaccharide)
Gelatin (Protein)

https://plenteousve
g.com/chitin/

https://fis.com/fis
/techno

https://www.collinsdictionar
y.com/

https://www.tradewheel.com/p/halal-beef-g
elatin-powder-priceedible-gelatin-153805/
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Performance Criteria for Bad Actors & Biopolymers

*Teflon (Polytetrafluoroethylene-PTFE) was used as a baseline for PFAS performance criteria comparisons.

High Efficiency Low EfficiencyMedium Efficiency Data Gap

PFAS* Polyethylene Polypropylene Chitin/Chitosan Pectin Gelatin

Barrier 
Properties

Water Vapor 
Permeability 

(WVP)
(g/m*day*atm)

0.00788 LDPE: 0.008 
HDPE: 0.002 0.0575 .315 (30) 0.135 (34)

Non- ideal 
mechanical 
properties 
and water 

vapor 
barrier(33)

Water Contact 
Angle  106.94° LDPE: 91o 

HDPE: 93o 97o 82-104o (38) 62.1o (34)

Mechanical 
Properties

Tensile 
Strength (MPa) 10.0 - 45.0 LDPE: 13.2

HDPE: 13.9 18 - 22 Neat: 37.7 (40)

In 2% Solution: 6.99 (41)
7.10 (34)

70 (42)

Total 
Elongation at 

Break  
40.0 - 650% LDPE: 456%

HDPE: 334% 50 - 145% Neat: 49.5% (40)

In 2% solution: 72.70% (41)
7.17% (34)

1.5%(42)
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Performance Criteria for Bad Actors & Biopolymers

Introduction Technical Performance Health and Environmental Performance
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Recommendations
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Performance Criteria for Bad Actors & Biopolymers
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Hazard Assessment for Bad Actors & Biopolymers
Bad Actors & 
Biopolymers PFAS Polyethylene Polypropylene Chitin/Chitosan Pectin Gelatin

Persistence H H H L L L

Bioaccumulation H L L L L L

Sensitivity / 
Irritation 

(Eye, Skin, Respiratory )
M M M L M M

Toxicity
(Dev & Repro, 

Systemic, Neuro.) H D D L L D

Aquatic Toxicity H L L M D L

Carcinogenicity / 
Mutagenicity H L L L L L

Endocrine H D D D D D

Low Hazard High HazardMedium Hazard Data Gap
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Summary: films composed of biopolymers

Increasing dilution and moisture barrier requirements

Laundry Powders Detergents Soaps

1
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Cross-linking

Limitations of Biopolymers

● Cross-linking is a “stabilization process in 
polymer chemistry which leads to 
multidimensional extension of polymeric 
chain resulting in network structure.”

Biopolymers lack the desired mechanical properties and 
aqueous stability, but this can be improved via cross-linking. 

Advantages of Cross-linking
Crosslinkers interconnect molecules, increase molecular 
weight, and generally provide higher mechanical 
properties and improved stability.

Disadvantages of Cross-linking
Crosslinking also leads to decreased degradability, 
lower availability of functional groups in the crosslinked 
polymer, and potential increase in cytotoxicity. 

Image from https://www.sciencedirect.com/science/article/pii/S0167779915000700#tbl0005 

● Not only does technical performance 
depend on the biopolymer combination, 
it also depends on the crosslinker and 
the nature of its crosslinking mechanism. 

Image from 
https://www.researchgate.net/publication/263355077_Investigation_of_Cross-Linked_and_Additive_Containin
g_Polymer_Materials_for_Membranes_with_Improved_Performance_in_Pervaporation_and_Gas_Separation 
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Performance Criteria for Cross-linking Reagents
        Glutaraldehyde Genipin Ferulic Acid

Biopolymer Pectin Gelatin Chitosan Pectin Gelatin Chitosan Pectin Gelatin Chitosan

Barrier 
Properties

Water Vapor 
Permeability 

(g*mm/kPa *m2* hr)

Decrease 
from 1.8 to 
0.8  

Little effect 
on WVTR 

Lower water 
sensitivity in 
gelatin-pectin films 
(6)

No effect 
on WVTR 
(68)  

No effect 
(0.00208 to 
0.00201) ( 32)

Increase 
from 2.05 
to 2.67 in 
(37)

Water contact 
Angle

Increase 
from 110 to 
118

Increase 
from 110 
to 11568 

Mechanical 
Properties

Tensile 
Strength

(MPa)

Increase 
from 11.1 
to 21.6 
with 
Gelatin 

Inc. from 
1.2 to 3.2 

 Inc. appx. 
from 75 to 
140 

Increase 
from 1.0 
to 6.8 (48)

Increase 
from 39 to 
50 in dry 
film (10)

Increase 
from 86 to 
96  (32)

No effect 
(19 to 20 )  
(37)

Total Elongation 
at Break  

Increase 
from 151 
to 159 
with 
Gelatin 

Increase 
appx . 
from 8 to 
29% 

Decrease 
from 211 
to 13% (48)

No effect 
in dry film 
(9 to 10%) 
(10)

Dec. from 
appx.  4.5 to 
3% (32) 

Decrease 
from 10.4% 
to appx.  
8.3- 9.3% 
(37)

High Efficiency

Low Efficiency

Medium Efficiency

Data Gap

Introduction Biopolymer Films RecommendationsChemical Additives Physical Additives



Performance Criteria for Cross-linking Reagents
        Glutaraldehyde Genipin Ferulic Acid

Biopolymer Pectin Gelatin Chitosan Pectin Gelatin Chitosan Pectin Gelatin Chitosan

Barrier 
Properties

Water Vapor 
Permeability 

(g*mm/kPa *m2* hr)

Decrease 
from 1.8 to 
0.8  

Little effect 
on WVTR 

Lower water 
sensitivity in 
gelatin-pectin films 

No effect 
on WVTR 

No effect 
(0.00208 to 
0.00201) ( 32)

Increase 
from 2.05 
to 2.67 in 
(37)

Water contact 
Angle

Increase 
from 110 to 
118 

Increase 
from 110 
to 115

Mechanical 
Properties

Tensile Strength
(MPa)

Increase 
from 11.1 
to 21.6 
with 
Gelatin 

Inc. from 
1.2 to 3.2 

 Inc. appx. 
from 75 to 
140 

Increase 
from 1.0 
to 6.8 

Increase 
from 39 to 
50 in dry 
film 

Increase 
from 86 to 
96  (32)

No effect 
(19 to 20 )  
(37)

Total Elongation 
at Break  

Increase 
from 151 
to 159 
with 
Gelatin 

Increase 
appx . 
from 8 to 
29%

Decrease 
from 211 
to 13% 

No effect 
in dry film 
(9 to 10%) 

Dec. from 
appx.  4.5 to 
3% (32) 

Decrease 
from 10.4% 
to appx.  
8.3- 9.3% 
(37)

High Efficiency

Low Efficiency

Medium Efficiency

Data Gap

Introduction Biopolymer Films RecommendationsChemical Additives Physical Additives



Performance Criteria for Cross-linking Reagents
        Glutaraldehyde Genipin Ferulic Acid

Biopolymer Pectin Gelatin Chitosan Pectin Gelatin Chitosan Pectin Gelatin Chitosan

Barrier 
Properties

Water Vapor 
Permeability 

(g*mm/kPa *m2* hr)

Decrease 
from 1.8 to 
0.8 

Little effect 
on WVTR 

Lower water 
sensitivity in 
gelatin-pectin films 

No effect 
on WVTR 

No effect 
(0.00208 to 
0.00201) 

Increase 
from 2.05 
to 2.67 in 

Water contact 
Angle

Increase 
from 110 to 
118 

Increase 
from 110 
to 115

Mechanical 
Properties

Tensile Strength
(MPa)

Increase 
from 11.1 
to 21.6 
with 
Gelatin 

Inc. from 
1.2 to 3.2 

 Inc. appx. 
from 75 to 
140 

Increase 
from 1.0 
to 6.8 

Increase 
from 39 to 
50 in dry 
film 

Increase 
from 86 to 
96  

No effect 
(19 to 20 )  

Total Elongation 
at Break  

Increase 
from 151 
to 159 
with 
Gelatin

Increase 
appx . 
from 8 to 
29% 

Decrease 
from 211 
to 13% 

No effect 
in dry film 
(9 to 10%) 

Dec. from 
appx.  4.5 to 
3% 

Decrease 
from 10.4% 
to appx.  
8.3- 9.3% 

Introduction Biopolymer Films RecommendationsChemical Additives Physical Additives



Chemical 
Additives Glutaraldehyde Genipin  Ferulic Acid

Persistence M L L

Bioaccumulation L D D

Sensitivity / 
Irritation 

(Eye, Skin, 
Respiratory )

M D M

       Toxicity
(Dev & Repro, 

Systemic, Neuro.)
H L L

Aquatic Toxicity H D L

Carcinogenicity / 
Mutagenicity D D L

Endocrine H D L

Low Hazard

High Hazard

Medium Hazard

Data Gap

Hazard Assessment for Cross-linking Reagents
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 Summary: chemical additives for crosslinking

Increasing dilution and moisture barrier requirements

Laundry Powders Detergents Soaps

2
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Nanofillers: Clays 

Image from: 
https://www.sciencedirect.com/science/article/pii/S016913171000030X?casa_token=oNWEf1Zm6I4AAAAA:5-h4lhPV7M3F4m5WUaS13Grz5s-U
tVUQnuJkdHFHpBvafeH-9dKVJw9_5v65l3wVPA7Q5yNCYw

https://www.reade.com/products/nanoclays-montmo
rillonite-bentonite-smectite

Montmorillonite
 (MMT)
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Nanofillers: Fibers 

Cellulose nanocrystals and cellulose 
nanocrystals-based composites with their 
unique features, such as abundance, 
renewability, high strength and stiffness, 
eco-friendliness, and relatively low density 
received unprecedented interest from both 
academia and industries as replacement of 
conventional petroleum-based materials, 
which create ecological threats such as 
global warming and pollution 65

Natural Fibers 
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Figure 1: Scheme of the acid hydrolysis of the cellulose pulp 
fibers, with the individualization of the cellulose nanocrystals



Performance Criteria for Nanofillers
         Montmorillonite (MMT) Cellulose Nanocrystals (CNC)

Biopolymer Pectin Gelatin Chitosan Pectin Gelatin Chitosan

Barrier 
Properties

Water Vapor 
Permeability 

(g*mm/kPa *m2* hr)

Decrease from 
2.52 to 1.51

Decrease  from 
6.2 × 10 -13 to 
1.8 × 10- 13

Decrease from 
2.6 × 10 −7  to 
1.6 × 10 −7  

Decrease from 
4.6 × 10 -7 to 
3.3 × 10−7  with 5 
wt% addition of 
the CNC (60)

Dec. from 2.2 x 10−7  to 
1.6 x × 10−7 with 4 wt% 
addition of CNC (61)

Decrease by 
45%  with 3% 
addition of 
CNC (65)

Water contact 
Angle

Between 5° to 
30° at a rate 
22 of 2°
/min(63)

Mechanical 
Properties

Tensile 
Strength

(MPa)

Increase from 2.4 
to 4.3  

Increase from 
10 to 38

Increase from 61 to  
69 in 5% 
MMT/Chitosan film

Increase from 7.1 
to 13.2 with 5 wt% 
addition of CNC 
(60)

Increase from 83 to 
108 with 4 wt% 
addition of CNC (61)

Increase from 
79 (neat 
chitosan) to 
86- 98 with 
the addition of 
1- 10%, (59)

Total 
Elongation at 

Break  

Decrease from 6.6 
to 5.4% 

Decrease from 
38 to 30%

Decrease from 3.8 
to 3.0 % in 5% 
MMT/Chitosan film

Increase from 20 
to 30% with 5 wt% 
addition of CNC 
(60)

Dec. from 38 to 23% 
with 4 wt% addition of 
CNC (61)

High Efficiency

Low Efficiency

Medium Efficiency

Data Gap
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Increase from 7.1 
to 13.2 with 5 wt% 
addition of CNC 

Increase from 83 to 
108 with 4 wt% 
addition of CNC

Increase from 
79 (neat 
chitosan) to 
86- 98 with 
the addition of 
1- 10%

Total 
Elongation at 

Break  

Decrease from 6.6 
to 5.4%

Decrease from 
38 to 30%

Decrease from 3.8 
to 3.0 % in 5% 
MMT/Chitosan film

Increase from 20 
to 30% with 5 wt% 
addition of CNC

Dec. from 38 to 23% 
with 4 wt% addition of 
CNC
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Physical Additives Montmorillonite Cellulose Nanocrystal

Persistence H L

Bioaccumulation H D

Sensitivity / 
Irritation 

(Eye, Skin, 
Respiratory )

M H

Toxicity
(Dev & Repro, 

Systemic, Neuro.) D L

Aquatic Toxicity L L

Carcinogenicity / 
Mutagenicity L L

Endocrine D D

Hazard Assessment for Nanofillers

Low Hazard

High Hazard

Medium Hazard

Data Gap
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Physical Additives Montmorillonite Cellulose Nanocrystal

Persistence H L

Bioaccumulation H D

Sensitivity / 
Irritation 

(Eye, Skin, 
Respiratory )

M H

Toxicity
(Dev & Repro, 

Systemic, Neuro.) D L

Aquatic Toxicity L L

Carcinogenicity / 
Mutagenicity L L

Endocrine D D

Low Hazard

High Hazard

Medium Hazard

Data Gap

Hazard Assessment for Nanofillers
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Summary: physical additives for nanofillers

Increasing dilution and moisture barrier requirements

Laundry Powders Detergents Soaps
3
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Final Assessment

Increasing dilution and moisture barrier requirements

Laundry Powders Detergents Soaps

321
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Limitations
Cost & Scalability Data Gaps Iteration & Experimentation
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Questions?
And Discussions
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