Berkeley Center for Green Chemistry

Home » Posts tagged 'environmental chemistry'

Tag Archives: environmental chemistry

How Robots Can Help Us Understand the Environmental Fate of Nanoparticles

“Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing” von der Kammer, F.; Ottofuelling, S.; Hofmann, T. Environ. Pollut. 2010, 158, 3472-3481. DOI: 10.1016/j.envpol.2010.05.007

In order to rationally design nanoparticles that are environmentally benign, we need to be able to accurately predict their environmental fate (i.e. will they travel long distances through waterways, get stuck in soils or sediments, etc?).  Though relatively robust modeling tools are available for predicting the environmental fate of organic chemicals, analogous tools for nanoparticles are in their infancy.  This is largely due to the insane variety of nanoparticle properties (e.g., composition, size, shape, surface chemistry, etc) that can be varied, resulting in an equally insane variety of nanoparticles to study.  In addition, we know very little about any of these nanoparticles.  One important property that controls the environmental fate of nanoparticles is their propensity to aggregate together and fall out of suspension, potentially limiting their environmental mobility.

(more…)