Berkeley Center for Green Chemistry

Home » Posts tagged 'metal-free syntheses'

Tag Archives: metal-free syntheses

Dioxygen Activation at Low-Valent Silicon

Xiong, Yao, Muller, Kaupp, Driess. From silicon(II)-based dioxygen activation to adducts of elusive dioxasiliranes and sila-ureas stable at room temperature. Nature Chemistry 2010, 2, 577-580. DOI: 10.1038/nchem.666

Metal-free syntheses are currently under intense investigation as potentially cheaper and less-polluting alternatives to reactions involving stoichiometric or catalytic metals. In the Driess group’s recent contribution to Nature Chemistry, they report a silylene compound that activates O2, a biologically and industrially relevant reaction that tends to be associated with transition metals. In addition, they were able to isolate and crystallographically characterize the first dioxasilirane, the silicon-based analogue of the more familiar dioxirane reagents. Importantly, Driess’s dioxasilirane is capable of intramolecular O-atom transfer with the resulting silanone having the shortest silicon-oxygen bond reported to date.

(more…)