Berkeley Center for Green Chemistry

Home » Posts tagged 'nanoparticles'

Tag Archives: nanoparticles

Toxicity of Iron Nanoparticles

“Stabilization or Oxidation of Nanoscale Zerovalent Iron at Environmentally Relevant Exposure Changes Bioavailability and Toxicity in Medaka Fish” Chen, P-J; Tan, S-W; Wu, W-L. Environ. Sci. Technol. 2012, ASAP. DOI: 10.1021/es3006783

We’ve posted before on iron-catalyzed reactions (see here for a recent post) as greener alternatives to more traditional platinum group catalyzed reactions. However, even iron has toxicity concerns as described in this paper from National Taiwan University on the toxicity in medaka fish of  zerovalent iron (nZVI) nanoparticles (NPs). This is particularly pertinent research in light of the increased usage of iron(0) nanomaterials in remediation.

The study investigates the effects of four different iron dosing ‘solutions’ on the molecular, cellular and organismal health of medaka larvae: (i) carboxymethylcellulose stabilized nZVI (CMC-nZVI), (ii) non-stabilized nZVI (nZVI), (iii) magnetite NPs (nFe3O4), and (iv) soluble Fe(II).

They first characterize the dosing solutions. The sizes of their nanoparticles are 75 nm, 25-75 nm, and 27 nm for CMC-nZVI, nZVI, and nFe3O4 respectively. The zeta potentials were measured to show, not surprisingly, that the CMC-stabilized particles are much more stable to aggregation than the non-stabilized nZVI.

Interestingly, of the four iron dosing solutions, CMC-nZVI has the most significant impact on the level of dissolved oxygen, decreasing it to zero where it remained for 12 hours. Furthermore, this aerobic oxidation of CMC-nZVI leads to a release of 45 mg/L of soluble Fe(II) in 10 min from an initial concentration of 100 mg/L CMC-nZVI as well as an increase in reactive oxygen species (ROS). In contrast, nZVI and nFe3O4 are 20 – 40 % aggregated within 10 min and release less than 20 mg/L of Fe(II) during this time. Only nZVI induces the production of ROS with nFe3O4 and soluble Fe(II) showing no increase in ROS relative to the control. The following figure details these findings for CMC-nZVI; analogous graphs are found in the supplementary information for the other solutions.

(more…)

A “Designer” Surfactant for Cross Couplings of Hydrophobic Reagents in Room Temperature Water

“TPGS-750-M: A Second-Generation Amphiphile for Metal-Catalyzed Cross-Couplings in Water at Room Temperature” Lipshutz, B. H.; Ghorai, S.; Abela, A. R.; Moser, R.; Nishikata, T.; Duplais, C.; Krasovskiy, A.; Gaston, R. D.; Gadwood, R. J. Org. Chem. 201176, 4379-4391. DOI: 10.1021/jo101974u

I occasionally run reactions in water, and it is awesome. I LOVE not worrying as much about cancer. Unfortunately many interesting chemicals are simply too hydrophobic to allow reactions to be run in aqueous solution. As anyone who has ever scrubbed a greasy pan will know, one way to get around the solubility problem is with soap. Also called emulsifiers, surfactants, amphiphiles, a soap by any name is pretty much the same thing in my mind (though others will disagree I’m sure). Molecules with hydrophilic and hydrophobic ends can form micelles in water, creating variously-shaped and sized particles with hydrophobic cores. Using those hydrophobic cores as reaction media is a concept known as micellar catalysis. The Lipshutz group was not the first player in this arena, but they have been at it for some time. They recently teamed up with the medicinal chemistry company Kalexsyn and came out with a new amphiphile that caught my eye, dubbed TPGS-750-M. 

(more…)

Nanoparticle Salad: A general route to Metal Oxide Nanoparticles using Green Chemistry

“Green Nanochemistry: Metal Oxide Nanoparticles and Porous Thin Films from Bare Metal Powders” Engelbert Redel, Srebri Petrov, Ömer Dag , Jonathon Moir, Chen Huai, Peter Mirtchev, and Geoffrey A. Ozin, Small2011DOI: 10.1002/smll.201101596

Advocates for green chemistry and nanotechnology have both promised technological solutions to society’s great challenges. Some of the barriers to widespread adoption of nanotechnology have been outlined by Jim Hutchison, and many of these barriers can be addressed by green chemistry. In particular the two issues that the current paper addresses are the excessive waste and the potential hazards associated with the metal precursors.

(more…)

How Robots Can Help Us Understand the Environmental Fate of Nanoparticles

“Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing” von der Kammer, F.; Ottofuelling, S.; Hofmann, T. Environ. Pollut. 2010, 158, 3472-3481. DOI: 10.1016/j.envpol.2010.05.007

In order to rationally design nanoparticles that are environmentally benign, we need to be able to accurately predict their environmental fate (i.e. will they travel long distances through waterways, get stuck in soils or sediments, etc?).  Though relatively robust modeling tools are available for predicting the environmental fate of organic chemicals, analogous tools for nanoparticles are in their infancy.  This is largely due to the insane variety of nanoparticle properties (e.g., composition, size, shape, surface chemistry, etc) that can be varied, resulting in an equally insane variety of nanoparticles to study.  In addition, we know very little about any of these nanoparticles.  One important property that controls the environmental fate of nanoparticles is their propensity to aggregate together and fall out of suspension, potentially limiting their environmental mobility.

(more…)